
Kerberized Network File System for Clusters
Evaluating the Impact of Increased Data Security

Chris Hoffman • Ian Burns • Paige Ashlynn Mentor: David Kennel

Test Set-UpAbstract

Test Procedure

Kerberos 5 & NFS 4

Future Work

Network File System
Initially developed by Sun Microsystems in the mid 1980s, the Network File System

(NFS) protocol has evolved to become an open, industry-standard means for data exchange,
employed on virtually all UNIX-like operating systems and available on most other systems as well.
Through the use of remote procedure calls (RPC), the NFS protocol is able to deliver files and file
systems across the network in much the same way that local files on local media are accessed.
Historically, NFS presented several serious drawbacks including a poor security model; however,
these concerns have been addressed in the most recent major revision of the protocol, version 4
(NFSv4). Operating simultaneously at multiple layers of the Internet protocol stack, NFSv4 is a
stateful protocol which expects an accompanying security mechanism. Several alternative security
measures are available.
Kerberos

Initially developed by the Massachusetts Institute of Technology in the early 1980s, Kerberos
(KRB) has been widely adopted as a robust, reliable, and adaptable authentication mechanism. An
open standard since its inception, the protocol has been revised numerous times to keep up with
the changing security world, and has become an integral element in virtually every major operating
system. Through the use of symmetric key cryptography and a trusted third-party security server,
Kerberos allows both clients and servers to mutually authenticate by proving their identities. The
current revision of Kerberos (KRB5) includes additional functionality such as the ability to verify
the integrity of data transmitted over the network. While the user need authenticate only once,
each subsequent transaction is silently validated. Kerberos is a complex protocol that relies on a
sophisticated security model. As such, implementing it on an already-complex system like a
supercomputer is not trivial. Nevertheless, the three security levels available in KRB5 allow policy
makers to weigh features against requirements.
Levels of Security

• Plain Kerberos (KRB5) — The most basic level of security provided by Kerberos allows for
clients and servers to prove to one another machine, application, and user identity in a manner
that prevents a variety of network misuses with minimal overhead. This level of security prevents
most forms of mounted-NFS abuse.

• Kerberos Integrity (KRB5i) — Has all the features of the basic KRB5, but in addition
employs a checksum technique to verify the integrity of the RPC data transmitted. This level of
security prevents transmission alteration.

• Kerberos Privacy (KRB5p) — Has all the features of KRB5i, but additionally employs
encryption to protect the RPC data. This level of security prevents intermediaries from reading the
RPC packets.

An outstanding problem for adoption of these technologies in a cluster
environment is integration of Kerberized NFS with a job scheduler. Currently
Torque (part of the Portable Batch System [PBS] project) partly supports
Kerberised NFS, but support is incomplete. In absence of ready solutions, the
simplest route may involve rewriting some of the code.

Another area for future research is integration with the Lightweight
Directory Access Protocol (LDAP). LDAP has been successfully integrated with
Kerberized NFS in the past, but not to our knowledge in a cluster environment.

Finally, analysis of the impact of server- and client-side caching is desirable.
If and how caching impacts Kerberized NFS depends upon a number of
operating system and hardware factors that could greatly alter the test results.

With constantly looming cyber-security threats, protecting production data has
become an increasingly important issue. Though clustered environments traditionally have
not required internal security, the landscape is changing rapidly. At LANL and other critical
sites, the need to adopt proactive measures is apparent; however, implementation of security
protocols should not compromise user experience or system performance. The Kerberos
protocol provides a high level of security while minimizing overhead. A central Kerberos server
provides authentication for a variety of services distributed over any number of connected
(enterprise or cluster) networks.

It is important for any authorized person to be able to access their data from whatever
computer they must use for their work. This could be a simple desktop workstation, or a large
supercomputer. There needs to be a single, secure method of accomplishing this sharing for all
environments. A Kerberized Network File System can be used to address this need for data
mobility in a trusted manner. However, the performance impact that Kerberos will have on
NFS in a clustered setting is still largely unknown. Factors such as level of security and types of
encryption affect performance and usability greatly, potentially critically in a High Performance
Computing environment.

We will evaluate these impacts and make a general recommendation for suitable security
levels and feasibility for possible deployments in current and future LANL systems.

Conclusions

Installation
NFS requires at least one machine to act as a fileserver. Similarly,

Kerberos requires at least one machine responsible for performing
authentications and providing session or service tickets and keys. For optimal
performance each machine should be a dedicated server. In addition, both
protocols allow for scaling via redundant servers, and the various stages of the
Kerberos protocol suite can be spread across multiple machines. In our
environment, we simulated an enterprise network and a High Performance
Computing (HPC) cluster all within a single physical cluster by dividing cluster
nodes into multiple virtual networks. On our simulated enterprise network, one
machine was dedicated to all Kerberos authentication activities, a second to NFS
file-serving, and a third to providing other network services (NTP, DNS, etc).
The remainder became the HPC cluster, with a Head node providing a gateway
to the outside network and several Compute nodes operating behind the Head.
Each Compute node acts as a Kerberos principal and an NFS client. Accessing
the enterprise network via the Head (which performs Network Address
Translation), the clients are able to authenticate and retrieve data in each of the
three security levels. To deploy a similar setup on a production system would
necessitate several infrastructure and network-topology choices. Ideally, the
NFS/KRB servers would probably reside outside the cluster on dedicated
machines; however, the optimum solution is application-dependant.

0

5

10

15

20

25

30

35

40

45

50

0.1 0.5 1 10 100 500 1024 2048

Tr
an

sf
er

 R
at

e
(M

B
/s

)

File Size (MB)

Average File Transfer Rate

krb5

krb5i

krb5p

bare nfs

00:00.00

00:04.32

00:08.64

00:12.96

00:17.28

00:21.60

00:25.92

00:30.24

00:34.56

00:38.88

00:43.20

Ti
m

e
(m

in
ut

es
:s

ec
on

ds
)

Average Time to Copy 10,000 5 kB Files

krb5

krb5i

krb5p

bare nfs

scp

00:00.00

02:52.80

05:45.60

08:38.40

11:31.20

14:24.00

17:16.80

20:09.60

Ti
m

e
(m

in
ut

es
:s

ec
on

ds
)

Average Time to Copy 20 500 MB Files

krb5

krb5i

krb5p

bare nfs

scp

0

10

20

30

40

50

60

little big little big little big little big little big

krb5 krb5i krb5p scp bare nfs

%
 C

PU

CPU Utilization by Protocol

The performance of Kerberized NFS was measured using
three tests over a gigabit Ethernet network.

For comparison purposes, we also measured the performance
of the standard UNIX/Linux remote file transfer command line
utility Secure Copy (SCP).

First, the average transfer rate for a range of file sizes from
100 kB to 2 GB was measured. The next test measured the
average time to copy 10,000 5kB files using each form of NFS and
SCP. The final test was similar but used 20 500 MB files. The
CPU utilization was also measured during these final 2 tests.
Each test was completed 10 times, and the average result of each
completion was taken.

All tests were performed from the same NFS client with no
other activity on any of the machines involved. The average
transfer rate test wrote files consisting entirely of zeros to a
mounted NFS directory, while the other tests wrote files
consisting of random values to a temporary folder before copying
them to an NFS directory.

At its simplest, Kerberized NFSv4 introduces minimal overhead to and can even accelerate an NFS
system while providing greatly improved security. Simple Kerberos 5 authentication provides equal
performance for a variety of use cases and little to no difference from a bare NFS system. Integrity-checking
KRB5i security changes little when handling a vast number of small files, but decays in performance as file size
increases. Encrypted KRB5p also scales well for small files, introducing expected though minimal overhead. For
large files, however, it decays more significantly in performance than KRB5i.

CPU load remained below 10% for all forms of NFS with the exception of small file transfers using the
encrypted KRB5p. So, while the actual transfer performance of KRB5p with small files scales well, it does use a
significant amount of additional CPU time.

For file transfers, SCP provides much improved transfer rates for large files at the expense of massive CPU
usage. On the other hand, NFS provides better transfer rates and lower CPU usage for small files, even with
encrypted Kerberized NFS.

Inside a cluster, Kerberized NFS behaves normally with the default addressless tickets. If a central node image
is used, as is the case with systems like Perceus, a keytab file using wildcards can be inserted into the image to allow
this normal operation. A significant limitation for a cluster, however, is that the user must authenticate — a
problem for scheduled jobs that run longer than the ticket lifetime.

Performance

LA-UR 09-04881

	Slide Number 1

