
HEC FSIO 2010 Workshop

Breakout 1.2: Combining Analytics and 
File Systems, Leveraging Google, etc.

Moderators: Marti Bancroft, John Bent, and Rob Ross



Highlights of discussion

 How much can we analyze, and how will we perform that 
analysis?

 How do we choose what data to keep for analysis?

 Changes to I/O architectures

 Data models for computational science

 Dynamic and composable systems

 Scheduling and co-scheduling

 (Things I was surprised *not* to hear)



How much can we analyze, and how will we 
perform that analysis?

 Trend toward increasing role of analysis in HPC I/O workloads

 At the same time, discussion that perhaps 95% of data that is produced is 
never analyzed. Can we do better than this, given upcoming “tsunami” of 
data?

 Is our current model of analysis (dump and post-process) adequate to our 
analysis needs?

– If we want a more “active storage” etc. approach, do we have enough 
knowledge at the low levels to accomplish that?

– In situ analysis (i.e., analysis of data while in memory during simulation) 
provides some help, but not all desired analysis is known beforehand or can 
be performed in situ (e.g., analysis that requires multiple timesteps).

– What about running analysis on the HPC system?



How do we choose what to keep for analysis?

 We want to keep everything we can.

 How do we prioritize what to throw away?
– Can we quantify the cost of recomputing data vs. storing and retrieving data?

– How do you know the value of data that you haven’t analyzed?

– Is the value related to how many people will extract knowledge from it?

 What about real-time analysis or simulations informed by real-time input 
data?

– Some emergency-management related real-time stuff exists.

– UQ and feedback of analysis into what to simulate next falls in this category.

 Will some application teams will hit the point where they simply cannot 
save enough to do their science (e.g., molecular dynamics, cross 
correlations on trajectories)?



Changes to I/O architectures

 Can we justify including analysis in the FS, or should we just put things in 
middleware?

 Combining data such as indices with traditional datasets confuses 
prefetching.

 Primitives in current PFSes aren’t right (PLFS results as one indicator)
– Rather than starting with a clean slate, start with the object model from 

current PFSes and use middleware for the rest?

– Provide control over buffering, prefetching, etc. so that the middleware can 
control it.

 How do we, or do we, separate archive from online?

 Smart compression might be a method to save space and bandwidth. 
Where is it best applied?



Data models for computational science

 There is a need for more complex data models than those supported in 
tools like HDF5, netCDF, and ADIOS today.

 Storage system needs to expose interface for layout control and 
inspection.

 Data model needs to map data into storage containers (e.g., files, objects) 
so that locality may be exploited during analysis.

 Data model support can exist in a library.

 As an alternative to explicitly storing data in a particular format, we could 
capture data as it resides in memory so that it may be restored quickly.

 We will want operators on the data model.



Dynamic and composable systems

 How is I/O support different in dynamic/composable systems?

 Will we always forklift upgrades, or will we be adding/removing 
components over time?

 How does the purposeful addition/removal of components compare to 
how we manage fault tolerance (unexpected removal of components)?



Scheduling and Co-Scheduling

 Awareness of data location during scheduling is seen as an advantage of 
the MapReduce approach.

 There is concern about contention between simulation output 
(checkpoint) and analysis, whether they are occurring on the same 
machine, or in an active storage environment.

– HEC FSIO QoS work should provide some (partial?) solutions.

 There is need for integration between scheduling of HPC jobs and analysis 
jobs.



Things I was surprised not to hear (and will bring 
up now)

 Indexing as a tool for reducing I/O demands of analysis.

 Possible roles of heterogeneous storage in analysis I/O (e.g., shifting data 
onto SSD from HDD prior to analysis, as per Reddy’s second scenario).

 Leaving data on compute node SSD and scheduling analysis back on the 
same nodes.


	HEC FSIO 2010 Workshop��Breakout 1.2: Combining Analytics and File Systems, Leveraging Google, etc.
	Highlights of discussion
	How much can we analyze, and how will we perform that analysis?
	How do we choose what to keep for analysis?
	Changes to I/O architectures
	Data models for computational science
	Dynamic and composable systems
	Scheduling and Co-Scheduling
	Things I was surprised not to hear (and will bring up now)

