
Ming Zhao

Computing & Information Sciences
Florida International University

zhaom@cis.fiu.edu

QoS-driven Storage Management for
High-end Computing Systems

Renato Figueiredo

Electrical & Computer Engineering
University of Florida
renato@acis.ufl.edu

Motivation

 The lack of QoS differentiation in HEC storage systems
 Unable to recognize different application I/O workloads

 Unable to satisfy users’ different I/O performance needs

2

Compute
nodes

APP1

APP2

APPn

APPn

APPn

Storage
nodes

Generic
parallel I/Os

HEC FSIO 2010

Motivation

 The need for different I/O QoS from HEC applications
 Diverse I/O demands and performance requirements

 Examples:
WRF: Hundreds of MBs of inputs and outputs

mpiBLAST: GBs of input databases

 S3D: TBs of restart files on a regular basis

 This mismatch will become even more serious in
future ultra-scale HEC systems

3HEC FSIO 2010

Objectives

 Per-application storage resource allocation
 Parallel file system (PFS) virtualization

 Efficient management of storage resource allocations
 Storage management services

 Automatic optimization of storage resources usage
 Autonomic storage resource management

4HEC FSIO 2010

Per-application I/O Bandwidth Allocation

 Problem: Lack of per-application I/O bandwidth
allocation
 Static partition of storage nodes is inflexible

 Compute nodes based partition is insufficient

 Proposed solution: PFS virtualization
 Per-application virtual PFSs

 Dynamically created and destroyed based on application lifecycles

 Application-specific I/O bandwidth allocation per virtual PFS

5HEC FSIO 2010

PFS Virtualization

 Proxy-based PFS virtualization
 Indirection of application I/O access

 Creation of per-application virtual PFS

6

Virtual PFS1

Compute
nodes

APP1

APP2

APPn

PFS

Proxy

Proxy
Virtual PFS2

Storage
nodes

HEC FSIO 2010

Implementation

 Prototype
 A PVFS2 (Parallel Virtual File System) proxy

 Intercept PVFS2 messages and virtualize PVFS2 deployment

 Evaluation
 A virtual machine based testbed

 Up to 128 PVFS clients and 16 PVFS servers

 Benchmark: IOR2

7HEC FSIO 2010

Virtualization Overhead

8HEC FSIO 2010

298.5

478.3

835.6

1029.1

292.3

506.3

827.4

1104.7

0

200

400

600

800

1000

1200

16 to 2 32 to 4 64 to 8 128 to 16

Th
ro

ug
hp

ut
 (M

B/
S)

of Clients to # of Servers

READ Performance Comparison

Virtual
Native

 Proxy CPU and memory usages are both very low

69.2

118.1

231.9

370.2

77.4

139.2

246.5

379.0

0

50

100

150

200

250

300

350

400

450

16 to 2 32 to 4 64 to 8 128 to 16
Th

ro
ug

hp
ut

 (M
B/

S)

of Clients to # of Servers

WRITE Performance Comparison

Virtual

Native

Simulation-based I/O Scheduling Study

 PFS simulator
 To flexibly study parallel I/O scheduling algorithms

 Simulate PFS network
 Use discrete event simulation library (OMNeT++ 4.0)

 Simulate PFS disks
 Use DiskSim to simulate the disks

 Our focus is in parallel I/O scheduling
 Simulate enough details necessary for scheduling study

but with an acceptable simulation time

9HEC FSIO 2010

Simulator Architecture

10HEC FSIO 2010

Client

trace

Metadata
Server

Stripping
Strategy

Client

trace

Client

trace

Simulated Network

OMNeT++

DiskSims instances

Data Servers
Scheduling
Algorithm

Metadata
Server

Local FS

Disk
queue

Local FS

Disk

queue

Local FS

Disk

queue
output

New request arrives

Query file layout

Send the request to data server

Dispatch the job

Send the results back

Implementation of Scheduling Algorithms

 Other scheduling algorithms, e.g., FIFO, Distributed SFQ
(DSFQ), MinSFQ, are also implemented

11HEC FSIO 2010

/* SFQ algorithm, at each data server */
systime = 0
waitQ.initiate()
while(!simulation_end) {

if reqArrive(), then:
R = getReq()
R.start_tag = min { R.getPrevReq().finish_tag, systime }
R.finish_tag = R.start_tag + R.cost / R.getFlow().weight
pushReq(R, waitQ)

if diskHasSlot(), then:
R = popReqwithMinStartTag(waitQ)
systime = R.start_tag
dispatch(R)

}

The request from client arrives
at the data server.

DiskSim tells OMNet++ that it
still has free slot.

OMNet++ dispatches the
request to DiskSim.

Simulation Example 1

 Simulating a PVFS2 setup
 2 parallel applications (each with 16 clients)

 4 data servers and 1 metadata server

 All files striped to all servers (stripe size: 256KB)

 Trace files are generated by IOR2
 Each client does a 100MB checkpoint operation

 I/O scheduling algorithms
 FIFO

 Local SFQ with different weight assignments (1:1, 2:1, 10:1)

12HEC FSIO 2010

Throughput Results

13HEC FSIO 2010

FIFO

0
10000
20000
30000
40000
50000
60000
70000

1 3 5 7 9 11 13 15 17 19 21 23 25

Time (s)

Th
ro

ug
hp

ut
(b

yt
e/

s)

Group 1

Group 2

SFQ (1:1)

0
10000
20000
30000
40000
50000
60000
70000

1 3 5 7 9 11 13 15 17 19 21 23 25

Time (s)

Th
ro

ug
hp

ut
(b

yt
e/

s)

Group 1

Group 2

SFQ (2:1)

0

20000

40000

60000

80000

100000

1 3 5 7 9 11 13 15 17 19

Time (s)

Th
ro

ug
hp

ut
(b

yt
e/

s)

Group 1

Group 2
SFQ (10:1)

0

20000

40000

60000

80000

100000

120000

1 3 5 7 9 11 13

Time (s)

Th
ro

ug
hp

ut
(b

yt
e/

s)

Group 1

Group 2

Simulation Example 2

 Similar to Simulation 1, except that workloads are
not evenly distributed across the data servers
 Application 1’s files are stripped to all servers [1, 2, 3, 4]

 Application 2’s files are stripped to only 3 servers [1, 2, 3]

 I/O scheduling algorithms
 FIFO

 Local SFQ

 Distributed SFQ (all servers share the global scheduling
information)

14HEC FSIO 2010

Throughput Results

15HEC FSIO 2010

FIFO

0
10000
20000
30000
40000
50000
60000
70000

1 3 5 7 9 11 13 15 17 19 21 23 25

Time (s)

Th
ro

ug
hp

ut
(b

yt
e/

s)

Group 1

Group 2

SFQ (1:1)

0
10000
20000
30000
40000
50000
60000
70000

1 3 5 7 9 11 13 15 17 19 21 23 25

Time (s)

Th
ro

ug
hp

ut
(b

yt
e/

s)

Group 1

Group 2

DSFQ (1:1)

0
10000
20000
30000
40000
50000
60000
70000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Time (s)

Th
ro

ug
hp

ut
(b

yt
e/

s)

Group 1

Group 2

Conclusion and Future Work

 Proxy-based PFS virtualization is feasible
 Its throughput overhead and resource usage overhead are

not significant

 TODO: implement optimized I/O schedulers upon proxy

 Simulation-based PFS scheduling study is valuable
 Its results can guide the design of real I/O schedulers

 TODO: improve the scale and realism of simulation

16HEC FSIO 2010

Acknowledgement

 Research team
 VISA lab at FIU

 Dulcardo Clavijo
 Lixi Wang
 Yiqi Xu

 ACIS lab at UF
 Yonggang Liu

 Industry collaborator
 Dr. Seetharami Seelam (IBM T.J. Watson)

 Sponsor: NSF HECURA CCF-0937973/CCF-0938045

 More information: http://visa.cis.fiu.edu/hecura

17HEC FSIO 2010

http://visa.cis.fiu.edu/hecura�

Backup slides

18HEC FSIO 2010

Parallel File System (PFS) Background

 At the core of storage resource management
 Components: PFS clients, data servers, metadata servers

 Examples: GPFS, IBRIX, Lustre, PanFS, PVFS etc.

 Designed for general parallel applications
 No differentiation of different application I/Os

 Fine-tuned for overall system throughput
 Not for specific application I/O QoS requirements

19HEC FSIO 2010

Different virtualization approaches

 Proxy based virtualization
 Applicable to different PFS protocols

 Seamless integration with existing HEC storage systems

 Non-negligible overhead due to extra layer of indirection

 PFS extension based virtualization
 Modifications on existing PFS protocols

 Support for per-application I/O identification and handling

20HEC FSIO 2010

Service-based Storage Management

 Problem:
 Management of I/O bandwidth allocations for a large

number of applications in a ultra-scale HEC system

 Proposed solution:
 Service-based middleware for managing virtual PFSs

 Storage resource scheduling

 Storage resource monitoring

21HEC FSIO 2010

Service-based Storage Management

 Storage resource scheduling
 Support for per-application reservation of I/O bandwidth

 Integration with typical HEC job schedulers (e.g., PBS,
Torque, LoadLeveler)

 Storage resource monitoring
 Support for per-application tracking of bandwidth usage

 Integration with typical cluster monitoring frameworks
(e.g., Ganglia, ClusterMon)

22HEC FSIO 2010

Autonomic Storage Resource Optimization

 Problem:
 Dynamic resource scheduling for fair sharing of storage

resources

 Automatic optimization of I/O bandwidth utilization

 Proposed research:
 Autonomic storage resource management upon the

virtualized PFS infrastructure

23HEC FSIO 2010

Autonomic Storage Resource Optimization

 Proxy-based autonomic
I/O control loop

 Dynamic scheduling
algorithms (e.g., SFQ)

 Optimization based on
coordinated scheduling

24

Monitor Execute

Analyze Plan

Proxy/Interposition Agent

Measure
per-application
utilization

Schedule
outgoing
requests

System model, request delay,
reordering

Coordination with
other proxiesM – A – P – E

Monitor Execute

Analyze Plan

Proxy/Interposition Agent

Measure
per-application
utilization

Schedule
outgoing
requests

System model, request delay,
reordering

Coordination with
other proxiesM – A – P – E

PFS Proxy

From PFS
client To PFS

server

HEC FSIO 2010

Existing PFS simulators

 The IMPIOUS simulator, by E Molina-Estolano, al.
et[1].
 It does not model the metadata server.

 The scheduler modules are lacking, so scheduling
algorithms are hard to model.

 The simulator developed in PVFS improvement
paper by Carns P. H., al. et[2].
 It over simulates the network, which extends the

simulation time.

 It uses real PVFS in simulation, which introduces too much
details, while not flexible.

25HEC FSIO 2010

Simulator Details

 Use the discrete event simulation library OMNeT++
4.0 to simulate the network.
 It is capable of simulating the network topology with

bandwidth and delay.

 Use DiskSim to simulate the data server disks.
 Disksim accurately estimates the time for data

transactions on the physical disks.

 Disksim allows users to extract disk characteristics from
real disks.

26HEC FSIO 2010

References

[1] E Molina-Estolano, C Maltzahn, J Bent and S A Brandt, “Building a parallel file system
simulator”, Journal of Physics: Conference Series 180 (2009) 012050.

[2] Carns P H, Ligon W B, al. et. “Using Server-to-Server Communication in Parallel File Systems to
Simplify Consistency and Improve Performance”, Proceedings of the 4th Annual Linux
Showcase and Conference (Atlanta, GA) pp 317-327.

[3] Yin Wang and Arif Merchant, “Proportional Share Scheduling for Distributed Storage Systems”,
File and Storage Technologies (FAST’07), San Jose, CA, February 2007.

[4] W. Jin, J. S. Chase and J. Kaur, “Interposed Proportional Sharing For A Storage Service Utility”,
SIGMETRICS, E. G. C. Jr., Z. Liu, and A. Merchant, Eds. ACM, 2004, pp. 37-48.

27HEC FSIO 2010

	QoS-driven Storage Management for High-end Computing Systems
	Motivation
	Motivation
	Objectives
	Per-application I/O Bandwidth Allocation
	PFS Virtualization
	Implementation
	Virtualization Overhead
	Simulation-based I/O Scheduling Study
	Simulator Architecture
	Implementation of Scheduling Algorithms
	Simulation Example 1
	Throughput Results
	Simulation Example 2
	Throughput Results
	Conclusion and Future Work
	Acknowledgement
	Backup slides
	Parallel File System (PFS) Background
	Different virtualization approaches
	Service-based Storage Management
	Service-based Storage Management
	Autonomic Storage Resource Optimization
	Autonomic Storage Resource Optimization
	Existing PFS simulators
	Simulator Details
	References

