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Motivation

 The lack of QoS differentiation in HEC storage systems
 Unable to recognize different application I/O workloads

 Unable to satisfy users’ different I/O performance needs

2

Compute 
nodes

APP1

APP2

APPn

APPn

APPn

Storage
nodes

Generic 
parallel I/Os

HEC FSIO 2010



Motivation

 The need for different I/O QoS from HEC applications
 Diverse I/O demands and performance requirements

 Examples:
WRF: Hundreds of MBs of inputs and outputs

mpiBLAST: GBs of input databases

 S3D: TBs of restart files on a regular basis

 This mismatch will become even more serious in 
future ultra-scale HEC systems
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Objectives

 Per-application storage resource allocation
 Parallel file system (PFS) virtualization

 Efficient management of storage resource allocations
 Storage management services

 Automatic optimization of storage resources usage
 Autonomic storage resource management
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Per-application I/O Bandwidth Allocation

 Problem: Lack of per-application I/O bandwidth 
allocation
 Static partition of storage nodes is inflexible

 Compute nodes based partition is insufficient

 Proposed solution: PFS virtualization
 Per-application virtual PFSs

 Dynamically created and destroyed based on application lifecycles

 Application-specific I/O bandwidth allocation per virtual PFS
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PFS Virtualization

 Proxy-based PFS virtualization
 Indirection of application I/O access 

 Creation of per-application virtual PFS 
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Implementation

 Prototype
 A PVFS2 (Parallel Virtual File System) proxy

 Intercept PVFS2 messages and virtualize PVFS2 deployment

 Evaluation
 A virtual machine based testbed

 Up to 128 PVFS clients and 16 PVFS servers

 Benchmark: IOR2
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Virtualization Overhead
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Simulation-based I/O Scheduling Study

 PFS simulator
 To flexibly study parallel I/O scheduling algorithms

 Simulate PFS network 
 Use discrete event simulation library (OMNeT++ 4.0)

 Simulate PFS disks
 Use DiskSim to simulate the disks

 Our focus is in parallel I/O scheduling
 Simulate enough details necessary for scheduling study 

but with an acceptable simulation time
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Simulator Architecture
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Implementation of Scheduling Algorithms

 Other scheduling algorithms, e.g., FIFO, Distributed SFQ 
(DSFQ), MinSFQ, are also implemented
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/* SFQ algorithm, at each data server */
systime = 0
waitQ.initiate()
while(!simulation_end) {

if reqArrive(), then:
R = getReq()
R.start_tag = min { R.getPrevReq().finish_tag, systime }
R.finish_tag = R.start_tag + R.cost / R.getFlow().weight
pushReq(R, waitQ)

if diskHasSlot(), then:
R = popReqwithMinStartTag(waitQ)
systime = R.start_tag
dispatch(R)

}

The request from client arrives 
at the data server.

DiskSim tells OMNet++ that it 
still has free slot.

OMNet++ dispatches the 
request to DiskSim.



Simulation Example 1

 Simulating a PVFS2 setup
 2 parallel applications (each with 16 clients)

 4 data servers and 1 metadata server

 All files striped to all servers (stripe size: 256KB)

 Trace files are generated by IOR2
 Each client does a 100MB checkpoint operation

 I/O scheduling algorithms
 FIFO 

 Local SFQ with different weight assignments (1:1, 2:1, 10:1)
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Throughput Results
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Simulation Example 2

 Similar to Simulation 1, except that workloads are 
not evenly distributed across the data servers
 Application 1’s files are stripped to all servers [1, 2, 3, 4]

 Application 2’s files are stripped to only 3 servers [1, 2, 3]

 I/O scheduling algorithms
 FIFO

 Local SFQ

 Distributed SFQ (all servers share the global scheduling 
information)
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Throughput Results
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Conclusion and Future Work

 Proxy-based PFS virtualization is feasible
 Its throughput overhead and resource usage overhead are 

not significant

 TODO: implement optimized I/O schedulers upon proxy

 Simulation-based PFS scheduling study is valuable
 Its results can guide the design of real I/O schedulers

 TODO: improve the scale and realism of simulation
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Parallel File System (PFS) Background

 At the core of storage resource management
 Components: PFS clients, data servers, metadata servers

 Examples: GPFS, IBRIX, Lustre, PanFS, PVFS etc.

 Designed for general parallel applications
 No differentiation of different application I/Os

 Fine-tuned for overall system throughput
 Not for specific application I/O QoS requirements
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Different virtualization approaches

 Proxy based virtualization
 Applicable to different PFS protocols

 Seamless integration with existing HEC storage systems

 Non-negligible overhead due to extra layer of indirection

 PFS extension based virtualization
 Modifications on existing PFS protocols

 Support for per-application I/O identification and handling
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Service-based Storage Management

 Problem:
 Management of I/O bandwidth allocations for a large 

number of applications in a ultra-scale HEC system

 Proposed solution:
 Service-based middleware for managing virtual PFSs

 Storage resource scheduling

 Storage resource monitoring
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Service-based Storage Management

 Storage resource scheduling
 Support for per-application reservation of I/O bandwidth

 Integration with typical HEC job schedulers (e.g., PBS, 
Torque, LoadLeveler)

 Storage resource monitoring
 Support for per-application tracking of bandwidth usage

 Integration with typical cluster monitoring frameworks 
(e.g., Ganglia, ClusterMon)
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Autonomic Storage Resource Optimization

 Problem:
 Dynamic resource scheduling for fair sharing of storage 

resources

 Automatic optimization of I/O bandwidth utilization

 Proposed research:
 Autonomic storage resource management upon the 

virtualized PFS infrastructure
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Autonomic Storage Resource Optimization

 Proxy-based autonomic 
I/O control loop

 Dynamic scheduling 
algorithms (e.g., SFQ)

 Optimization based on 
coordinated scheduling
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Existing PFS simulators

 The IMPIOUS simulator, by E Molina-Estolano, al. 
et[1]. 
 It does not model the metadata server. 

 The scheduler modules are lacking, so scheduling 
algorithms are hard to model.

 The simulator developed in PVFS improvement 
paper by Carns P. H., al. et[2]. 
 It over simulates the network, which extends the 

simulation time.

 It uses real PVFS in simulation, which introduces too much 
details, while not flexible.
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Simulator Details

 Use the discrete event simulation library OMNeT++ 
4.0 to simulate the network.
 It is capable of simulating the network topology with 

bandwidth and delay.

 Use DiskSim to simulate the data server disks.
 Disksim accurately estimates the time for data  

transactions on the physical disks.

 Disksim allows users to extract disk characteristics from 
real disks.

26HEC FSIO 2010



References

[1] E Molina-Estolano, C Maltzahn, J Bent and S A Brandt, “Building a parallel file system 
simulator”, Journal of Physics: Conference Series 180 (2009) 012050.

[2] Carns P H, Ligon W B, al. et. “Using Server-to-Server Communication in Parallel File Systems to 
Simplify Consistency and Improve Performance”, Proceedings of the 4th Annual Linux 
Showcase and Conference (Atlanta, GA) pp 317-327.

[3] Yin Wang and Arif Merchant, “Proportional Share Scheduling for Distributed Storage Systems”, 
File and Storage Technologies (FAST’07), San Jose, CA, February 2007.

[4] W. Jin, J. S. Chase and J. Kaur, “Interposed Proportional Sharing For A Storage Service Utility”, 
SIGMETRICS, E. G. C. Jr., Z. Liu, and A. Merchant, Eds. ACM, 2004, pp. 37-48.

27HEC FSIO 2010


	QoS-driven Storage Management for High-end Computing Systems
	Motivation
	Motivation
	Objectives
	Per-application I/O Bandwidth Allocation
	PFS Virtualization
	Implementation
	Virtualization Overhead
	Simulation-based I/O Scheduling Study
	Simulator Architecture
	Implementation of Scheduling Algorithms
	Simulation Example 1
	Throughput Results
	Simulation Example 2
	Throughput Results
	Conclusion and Future Work
	Acknowledgement
	Backup slides
	Parallel File System (PFS) Background
	Different virtualization approaches
	Service-based Storage Management
	Service-based Storage Management
	Autonomic Storage Resource Optimization
	Autonomic Storage Resource Optimization
	Existing PFS simulators
	Simulator Details
	References

