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Data and Metadata Decoupled Structure

Clients Metadata Servers * Asingle metadata server

& & g (MDS) can still become a

severe performance
8 T g g, bottleneck.

* Inlarge-scale storage
systems, multiple
metadata servers are
desirable for improving
scalability.




Fast Metadata Lookups

Bloom Filter Array
A simple and naive solution, but
file queries 1 [ Bloom filter | . .
introducing problems:
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Y. Zhu, H. Jiang, J. Wang and F. Xian, "HBA: Distributed Metadata Management System for Large Cluster-based
Storage"”, IEEE Transaction on Distributed and Parallel Systems, Vol. 19, No. 6, pp. 750-763, June 2008



G-HBA: Group-based Hierarchical
Bloom filter Array

» The basic idea iIs to decentralize
metadata management among
multiple groups of MDSs;

» Design objective:

» Improving scalability and query

\ s efficiency.
e ; .
\ - LRU Bloom filter || L1: local LRU query > SUppOrting dynamic and self-
MDS Segmen Bl 21 || 1.3, ol quety on adaptl\_/e operations in ultra large-
array an MDS scale file systems.

g L.3: group multicast query

(ICDCS’08) GHBA: Scalable and Adaptive Metadata Management in Ultra Large-scale File Systems



Dynamic and Adaptive Group Reconfigurations

(1): Migrate copies of local replicas to light-
weight MDSs in thi other group

(2): Generation of one new group

I - T
.\Keep mugrated replicas ) I

(a) Group splitting (b) Groups merging

Identify optimal group size M through a simple benefit function:

. Us.ipa (throu.) 1

UG—HB—\ (Spa(.‘e) UG-HBA ([(Zfeﬂ.. ) * UG-HBA (Spa(.‘e)

Table 1. Symbol representations.
h N-M | Symbol | Description |
where UG ripa (space) = M Prrry Unique hit rate in the LRU Bloom filters
: ) Unique hit rate in the 2nd level Bloom filters
Uq_gpallaten.) = Dypy + (1 — Prry)Drs + P q
< HBA( ) LR ( p LRE ) L2 Digrr Latency in the LRU Bloom filters
( 1-P; RU) (1 _ ﬁ) Dgroz p+ Dr» Latency in the 2nd level Bloom filters
M P Doroyp Latency in one group
(1 —Prru) (1 — E)M Dot Dyt Latency in entire multicast network




Average latency (ms)

Performance Evaluation

Prototype Implemented in a Linux Cluster with 60 MDS

Use trace playback tool FEUT to create reproducible benchmarks based on

traces collected on actual systems

Reduce latency by 48.% and 41.5% latency under HP & Harvard traces

Harvard Traces
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Concurrent sub-traces
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(ICDCS’08) GHBA: Scalable and Adaptive Metadata Management in Ultra Large-scale File Systems



Metadata Prefetching Algorithm 1: Motivation

* File Correlation

— Files accessed by the same user tend to have strong correlations
— Individual program typically access the same files in the same order
— Strong correlation among files stored in the same directory

e File correlation mining (existing approaches)

— File access sequence mining (access frequency)
e Last Successor, First Successor, Nexus

— File semantic attribute mining (semantic similarity)
e Semantically Smart Disk Systems (SDS), C-Miner

e Qur contribution

— Judiciously considers both file access sequences and semantic attributes
simultaneously

(HPDC’08) FARMER: File Access corRelation Mining and Evaluation Reference model for peta-scale file systems



Metadata Prefetching Algorithm 1
FARMER: CoMiner

e Evaluating Semantic Distance

— Use vector space model to measure semantic correlation between

files
Sim(A B |A N B|
LMmiA, =
A5 = Tmax @, B)|
A, B: semantic vectors of file Aand B

ANB: equal items between A and B
max(A, B): maximum number of items

e Evaluating Access Frequency
— Frequency of accesses in which file B is the successor of file A :

F(A,B) = Nyg/N

Nas: the number of occurrences that file B is the successor of A
N: the total number of accesses of file A

(HPDC’08) FARMER: File Access corRelation Mining and Evaluation Reference model for peta-scale file systems



FARMER: CoMiner(Cont’)

File Correlation Degree

R(A,B) =Sim(A,B) -p+ F(A,B) - (1 —p)

p: atunable weight
Sim(A,B): semantic distance,
F(A,B): access frequency

Four-stage processing

In this stage, FARMER eaHistitiedt Boaisdighiasitilrizikek dinekde
hetpsn ser and @saluatiei §igr aphr elacionsle represents an accessed file and the directed edge
represents an access order, weight on each edge equals the value of correlation degree.

(HPDC’08) FARMER: File Access corRelation Mining and Evaluation Reference model for peta-scale file systems



FARMER: Experiment Architecture

o ———————
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(HPDC’08) FARMER: File Access corRelation Mining and Evaluation Reference model for peta-scale file systems



Case Study — Prefetching Metadata

e Prefetching Accuracy

— Compared to Nexus
Improve about 20% (HP trace)

e Response time
— Compared to Nexus
Reduce by about 22.8% (LLNL), 12.3% (RES), 24.0% (HP trace)
— Compared to LRU
Reduce by about 27.6% (LLNL), 23.3% (RES), 36.1% (HP trace)
e Cache hit ratio
— Compared to Nexus
Improve about 10.6% (LLNL), 7.8% (RES), 13.1% (HP trace)

— Compared to LRU
Improve by about 18.4% (LLNL), 13.3% (RES), 25.3 % (HP trace)

(HPDC’08) FARMER: File Access corRelation Mining and Evaluation Reference model for peta-scale file systems



Metadata Prefetching Algorithm 2:
Affinity-based Metadata Prefetching (AMP)

e Step 1: According to the fixed group size, a slide window is adopted to
divide the training trace into different groups. The first two items are fixed
and the same items in each group are filtered.

— Example training trace:

ABCADEFABE

(CCGrid’08) AMP: An Affinity-based Metadata Prefetching scheme for metadata servers



AMP: Scheme Description

e Step 1: According to the fixed group size, a slide window is adopted to
divide the training trace into different groups. The first two items are fixed
and the same items in each group are filtered.

— Example training trace:

ABCADEFABE

| ABCADE |

(CCGrid’08) AMP: An Affinity-based Metadata Prefetching scheme for metadata servers



AMP: Scheme Description

e Step 1: According to the fixed group size, a slide window is adopted to
divide the training trace into different groups. The first two items are fixed
and the same items in each group are filtered.

— Example training trace:

ABCADEFABE

| ABCADE |
| BCADEF |

(CCGrid’08) AMP: An Affinity-based Metadata Prefetching scheme for metadata servers



AMP: Scheme Description

e Step 1: According to the fixed group size, a slide window is adopted to
divide the training trace into different groups. The first two items are fixed
and the same items in each group are filtered.

— Example training trace:

ABCADEFABE

s 3

ABCADE
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(CCGrid’08) AMP: An Affinity-based Metadata Prefetching scheme for metadata servers



AMP: Scheme Description

e Step 1: According to the fixed group size, a slide window is adopted to
divide the training trace into different groups. The first two items are fixed
and the same items in each group are filtered.

— Example training trace:

ABCADEFABE

s 3

ABCADE

~ J
e N

BCADEF
CADEFA

~ J

ADEFAB |

/
~N

(CCGrid’08) AMP: An Affinity-based Metadata Prefetching scheme for metadata servers



AMP: Scheme Description

e Step 1: According to the fixed group size, a slide window is adopted to
divide the training trace into different groups. The first two items are fixed
and the same items in each group are filtered.

— Example training trace:

ABCADEFABE

s 3

ABCADE

~ J
e N

BCADEF
CADEFA

~ J

ADEFAB |

/
~N

DEFABE |

(CCGrid’08) AMP: An Affinity-based Metadata Prefetching scheme for metadata servers



AMP: Scheme Description

e Step 1: According to the fixed group size, a slide window is adopted to
divide the training trace into different groups. The first two items are fixed
and the same items in each group are filtered.

— Example training trace:

ABCADEFABE

ABCADE |
BCADEF |
| CADEFA |
ADEFAB |
DEFABE |

J

EFABE

(CCGrid’08) AMP: An Affinity-based Metadata Prefetching scheme for metadata servers



AMP: Scheme Description

e Step 1: According to the fixed group size, a slide window is adopted to
divide the training trace into different groups. The first two items are fixed
and the same items in each group are filtered.

— Example training trace:

ABCADEFABE

ABCADE |
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BCADEF |
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ADEFAB |
DEFABE |
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AMP: Scheme Description

e Step 1: According to the fixed group size, a slide window is adopted to
divide the training trace into different groups. The first two items are fixed
and the same items in each group are filtered.

— Example training trace:
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AMP: Scheme Description

e Step 1: According to the fixed group size, a slide window is adopted to
divide the training trace into different groups. The first two items are fixed
and the same items in each group are filtered.

— Example training trace:

ABCADEFABE

| ABCADE ;————e{ AB: CDE ]
(| BCADEF | ! AN

i g prefix affix
| CADEFA |

| ADEFAB |

| DEFABE |

| EFABE

( FABE |

~ J

(CCGrid’08) AMP: An Affinity-based Metadata Prefetching scheme for metadata servers



AMP: Scheme Description

e Step 1: According to the fixed group size, a slide window is adopted to
divide the training trace into different groups. The first two items are fixed
and the same items in each group are filtered.

— Example training trace:

ABCADEFABE

s 3 s 3

ABCADE [ ———> AB:CDE

- / - /
e 3 -

| BCADEF |——[ BC: ADEF:
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(CCGrid’08) AMP: An Affinity-based Metadata Prefetching scheme for metadata servers



AMP: Scheme Description (Cont’)

e STEP 2: find out different items in the training trace and use these items as
the root of the tree.

— “A:3” indicates that the frequency of A is three.

e STEP 3: allocate the first two items of each group to the corresponding root.

BB PPS

(CCGrid’08) AMP: An Affinity-based Metadata Prefetching scheme for metadata servers




AMP: Scheme Description (Cont’)

e STEP 4: allocate rest items of each group to the corresponding tree, and
find out the prefetching candidates from the tree.

®
‘//\.

CApL )
T~

e D
?-- x i o G
e &

When A is missed, we prefetch B and E according to the prefetching
candidate with the largest frequency.

(CCGrid’08) AMP: An Affinity-based Metadata Prefetching scheme for metadata servers



AMP: Simulation Results

HP File Server Traces
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Average response time for 8 MDS, 800-

Client local hit rate. )
2400 clients.

Compared with LRU, Nexus and C-miner, trace-driven simulations show that AMP
improves the hit rates by up to 12%, 4.5% and 4%, while reduce the average
response time by up to 60%, 12% and 8%, respectively.

(CCGrid’08) AMP: An Affinity-based Metadata Prefetching scheme for metadata servers 26



SOGP Design: Segment 1/0 examples

e Reorganize on-disk data on the fly
e Make Future accesses become sequential accesses
e Recent popularity grouping algorithm: best-j-out-of-k

Fil F1 F2 F3
le [NNNIN NN N Fic [N TE B

N2

Dynamic Grouping Dynamic Grouping

Segment
—_ T

) — S
Disk | Disk

(ICPP’08) SOGP: Segment Structured On-disk Data Grouping and Prefetching
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Evaluation Methodology:

Hardware Platform C

onfiguration

Overview

CASS @UCF

Chiba-City @ANL

Number of nodes

16

256

Interconnect

Nortel 5510-48T
NonBlocking 48 port high
speed network switch

64-bit Myrinet

Per node configuration

Make and Model

Dell PowerEdge 1950

IBM Netfinity 7000s

CPU per node

2 x Intel Xeon Dual core
2.33 GHz

2 x Intel PII1 500 MHz

Memory

4GB DDR2 533 MHz

512 MB

Hard Drive

2 x 144GB SAS or
2 x 500GB SATA

9 GB

(ICPP’08) SOGP: Segment Structured On-disk Data Grouping and Prefetching
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Evaluation Methodology:
Software Environment

Noncontig, MPI-Tile-10, IOR, CP2K, SIESTA etc.

HDF5, pNetCDF (optinal)

MPI1/MPI-10

PVES client

PVES server

SOGP

Ext3 file system

(ICPP’08) SOGP: Segment Structured On-disk Data Grouping and Prefetching
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Experimental Results: Noncontig I/O Bandwidth

/O Bandwidth (MB/s)

1

1

=

o

o
\

40 -

230% Gain

@ Collective Read
M Independent Read

20

80 -

60 -

92% Gain

40 -

20 -

PVEFS/SOGP PVFS/Ext3

16 servers, 8 clients

(ICPP’08) SOGP: Segment Structured On-disk Data Grouping and Prefetching 30



Main Research Results

 Performance Optimization Through Semantic Mining & Grouping

(ICDCS’08) GHBA: Scalable and Adaptive Metadata Management in Ultra Large-scale File Systems

(HPDC’'08) FARMER: File Access corRelation Mining and Evaluation Reference model for peta-scale
file systems

(CCGrid’08) AMP: An Affinity-based Metadata Prefetching scheme for metadata servers

(Ph.D. dissertation), Metadata and Data Management in High Performance File and Storage
Systems

(ICPP’08) SOGP: Segment Structured On-disk Data Grouping and Prefetching

e Workload Modeling

(MASCOTS’08) A Novel and Generic Model for Synthesizing Disk I/O Traffic Based on The Alpha-
stable Process

(Cluster’08) A Novel Model for Synthesizing Parallel /O Workloads in Scientific Applications

e Energy Efficiency Optimization

(MASCOTS’08) GRAID: A Green RAID Storage Architecture with Improved Energy Efficiency and
Reliability

(MASCOTS’08) Energy Efficient Buffer Cache Replacement
(ICPP’08) Impacts of Indirect Blocks on Buffer Cache Energy Efficiency
(Cluster’07, Best Paper Award): Evaluating Memory Energy Efficiency in Parallel I/0 Workloads
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Complex |/O Behavors

IID vs Self-Similarity:
— |ID: search engine 1/0O, tpc-d
— Self-similar: cello96 (Gaussian) and cello99 (non-Gaussian)

— Scientific application workloads: ior2, f1, m1 and MPI-IO
e Non-IID for I/O arrival process on most computing nodes, and
e |ID for I/O arrival in a small number of remaining subtraces.

Gaussian self-similarity vs non-Gaussin self-similarity
— cello96 (Gaussian) and cello99 (non-Gaussian)

Accurately modeling disk 1/Os remains an challenge issue due to the
burstiness

We propose an accurate and versatile /O model based on alpha-stable
process.

(MASCOTS’08) A Novel and Generic Model for Synthesizing Disk 1/0O Traffic Based on The Alpha-stable Process
(Cluster’08) A Novel Model for Synthesizing Parallel I/0 Workloads in Scientific Applications



Synthesizing 1/0 Workload

e The trimmed mean of errors
— to evaluate the matching degrees between real workload and the synthetic

ones.

DataSet a-stable FBM FARIMA ONJ/OFF

DataSet  o-stable Normal Poisson Lognorm Cello96
 En e o
; ifg ?ig g;g 33; 11 888 11201 6L22 3.02
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Empirical Study (Disk 1/0s)

11D Workloads
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Fraction of VOs Fraction of 1108 Fraction of WOs

Fraction of 1/0s

Empirical Study (Parallel I/Os - LLNL)
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Empirical Study (Parallel I/0Os -- LANL)

- . (@) N—M {32 Procs)
= |
| = ]
o Froposed model
= 0.5 Markow model
= —  —  Normal rmodel
: ——— FARIMA modeal
E o = FEM model
= 500 giLeLe n TS
WO volume (1Cs/s.)
&) N=1—-nonstrided (32 Procs)
= 1 |‘ F] _.: —r -7 . 1
S. I — Real trace
x Ilr-" : Proposed model
Q 0.5 [ Markow moded
B i — - — - Normnal rmodel
5 S —=— FARIMA model
E | " . FEM rmodel
—gDI] 0 200 400 &00 800
MO volume (Os/s.)
{8) MN=1=strided (32 Procs)
g1 =
g -
0.8 g o
g ——— Real trace
g 0.6 Proposed model
5 0.4 Markov model
.E — - —  MNommal model
E a2 — s FARIMA model
o . FEM model
-0 (0] 20 o L= [=" 0]

WO wolume (Osls )

Fraction of O requests Fraction of /O requests

Fraction of /0 requests

(b} N—=M {96 Procs)

..r -

— Real trace
! Proposed model
o5l ! = hNarkow model
— - Normnal model
—— FARIMA model
! FEM rmioded
-%00 0 1000 1500
PO volume (1Cs/s.)
1 {d) N=1=nonstrided (996 Procs)
08} Real trace
06} Froposed model
— — — Markow rmodel
0.4 —  —  Normal model
ozl —=— FARIMA model
= FEM modeal
—?ID[I 1] 100 200 300 400
PO volume (1Cs/s.)
{f) N—1-strided (96 Procs)
1 = Cr —— I
0.5 — Real trace
0.5 Froposed model
0.4 Markov model
— - — - MNormal model
02 ) ———— FARIMAS model
o ) o FBEMM rmodel
=20 =10 0] 20 30 40

PO volume (1Cs/s.)



Main Research Results

e Optimizing Metadata Management with Semantic Mining & Grouping

(ICDCS’08) GHBA: Scalable and Adaptive Metadata Management in Ultra Large-scale File Systems

(HPDC’'08) FARMER: File Access corRelation Mining and Evaluation Reference model for peta-scale
file systems

(CCGrid’08) AMP: An Affinity-based Metadata Prefetching scheme for metadata servers

(Ph.D. dissertation), Metadata and Data Management in High Performance File and Storage
Systems

(ICPP’08) SOGP: Segment Structured On-disk Data Grouping and Prefetching

e Workload modeling

(MASCOTS’08) A Novel and Generic Model for Synthesizing Disk I/O Traffic Based on The Alpha-
stable Process

(Cluster’08) A Novel Model for Synthesizing Parallel I/0 Workloads in Scientific Applications

e Energy Efficiency Optimization

(MASCOTS’08) GRAID: A Green RAID Storage Architecture with Improved Energy Efficiency and
Reliability

(MASCOTS’08) Energy Efficient Buffer Cache Replacement

(ICPP’08) Impacts of Indirect Blocks on Buffer Cache Energy Efficiency

(Cluster’07, Best Paper Award): Evaluating Memory Energy Efficiency in Parallel I/O Workloads

37



GRAID: Improving Power-Efficiency of RAID10

1/0O Workload Basic |dea:

¢ ¢ ¢ 1. Update the mirroring disks only
periodically

2. Store all updates since the last
mirror-disk update in a log disk

Disp;atch

———

> Ly Ly e <=

> <« Y < > A

Pair 1 Pair 2 Pair 3

Obijective: spin down all the mirroring
disks (or half of the total disks)
most of the time to a lower power
mode to save energy without
sacrificing reliability.

Architecture of GRAID

GRAID: GRAID: A Green RAID Storage Architecture with Improved Energy Efficiency and Reliability (MASCOTS’08)



Reliability

State transition probability diagram for a GRAID disk array
consisting of 4 data disks and 1 log disk. Reliability analysis
shows that the reliability of GRAID, in terms of MTTDL (Mean
Time To Data Loss), is only slightly worse than RAID10.

GRAID: GRAID: A Green RAID Storage Architecture with Improved Energy Efficiency and Reliability (MASCOTS’08)



Performance

Prototype Implemented based on Linux Software RAID

GRAID —x— RAIDO —=— RAIDI0 ‘ GRAID —x— RAIDO —— RAID10

~
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lometer benchmark shows that

GRAID’s energy efficiency is

significantly better than that of

RAID10, but worse than RAIDO
o which is without redundancy

[o))
T

[\
T
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GRAID: GRAID: A Green RAID Storage Architecture with Improved Energy Efficiency and Reliability (MASCOTS’08)



Power Consumption (J)

Energy Comparisons

e Two financial traces from Storage Performance Council
e Use a block-level trace replay software RAIDmeter

| — RAIDI0 — GRAID |

- — RAIDIO —  GRAID
1600 200, |
1400 —
S
1200 5 600/
1000 2
£
800 Z 400" MML
600 8 MMM n - At e on
400 S 200
200 ~
0 0
1 61 121 181 241 301 1 61 21 181 241 301
Access Time (10*second) Access Time (10*second)
(a) Financiall.spc (b) Financial2.spc

GRAID’s energy efficiency is better than RAID10 by 25.4%.

GRAID: GRAID: A Green RAID Storage Architecture with Improved Energy Efficiency and Reliability (MASCOTS’08)



Motivations for Memory Energy

e Memory can consume 50% more power than processors on data servers [IBM]

Table 1. Power consumption breakdown for an IBM p670.

Processor

/0 and 1/0
IBM p670 and memory component Total
server Processors Memory other fans fans watts <. single MCM with four single-
Small 384 318 90 676 144 1,614  core chips with a 128-
configuration Mbyte L3 cache and a 16-Gbyte
(watts) memory
Large 840 1,223 90 676 144 2972 Large: dual MCM with four dual-
configuration core chips) with a 256-Mbyte L3
(watts) cache and a 128-Gbyte memory

 The memory capacity continues to increases rapidly
IBM Bluegene @ LLNL: 32TB memory
EMC Symmetrix DMX3000: up to 256GB/server

* Network DMA and disk DMA are dominant memory operations on
data servers



Energy-aware Buffer Caching

Quantify the energy impact of eight different cache
replacement algorithms including ARC, Belady, LRU, LIRS,
LRFU, MQ, LRU2, and 2Q.

Interplay among the following three factors are the most
iImportant

e cache algorithm’s hit rate,

e clustering hot block ability,

e cache populating schemes

Sequential populating is better than random populating,
especially under sequential workloads

(MASCOTS’08) Energy Efficient Buffer Cache Replacement
(ICPP’08) Impacts of Indirect Blocks on Buffer Cache Energy Efficiency
(Cluster’07, Best Paper Award): Evaluating Memory Energy Efficiency in Parallel |/O Workloads



Energy-aware Buffer S—

Caching: Meep
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Thank you!



Definition 4.1 A random variable X is said to have a sta-
Dle distribution if there exist parameters O < o0 <2, 0 > (),
—1 < B <1, and u € R such that its characteristic function
has the following form [21]:

| —c%160|%(1—iBsignb tan * )+-in 6
R e RS €)
¢ sign 11\9\)%—5;1.9? o= 1
1, 0 >0
where signf = < 0, 06=0 ,a B, cand U are char-
-1, 6<0

acteristic exponent, skewness parameter, scale and loca-
tion parameters, respectively.

The characteristic exponent a represents the level of burstiness.



Data Center
Energy Use

In 2005 data centers used:

e About 45 billion kWh - roughly
1.2% of all U.S. electricity
consumption (comparable to the
amount used for color TVs)

e About 2.6 million kW (power
demand)

Data Center
Energy Forecast

It is projected that DC & server
electricity use will more than
double from 2006 to 2011:

— From 59 billion kWh to 119
billion kWh (2.8% of electric
use)

— If current trends continue could
slow the rise to 103 billion kWh

Denise Rouleau, report “work together”.



Energy Use of Data Centers

Lighting Other
Office Space 20/ 13%
Conditioning

1%

Electrical Room

Cooling
4%
Cooling Tower gata Cintec:
Plant erv;ry oa
4% 0

Data Center
CRAC Units
25%

Source: Alliance to Save Energy 1/2007
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