
8/6/2008 HEC-FSIO 2008 1

An Update-Aware Disk Access Interface 
for High-Throughput Database Indexes

Tzi-cker Chiueh

Experimental Computer Systems Lab
Stony Brook University



8/6/2008 HEC-FSIO 2008 2

Random Index Update 
Workload

Block-level continuous data protection
Logs every disk write operation to disk
Inserts entries into two indexes: 
Timestamp+LogicalBlockAddress (with locality)
LogicalBlockAddress+Timestamp (no locality)

Very-large-scale data deduplication
1PByte backup server using 4KByte block as unit of de-
duplication 250B entries of block fingerprint
Every disk block backed up needs to access this fingerprint 
index and update some reference count



8/6/2008 HEC-FSIO 2008 3

Conventional Disk Access 
Interface

Disk read: read(target_disk_address, dest_buffer, len)
Optimization: read ahead or prefetching

Disk write: write (source_disk_address, src_buffer, len)
Optimization: logging and write behind

Typical policy
Disk reads are serviced mostly synchronously
Disk reads are serviced at a higher priority than disk writes

Disadvantage: reads in write-after-read update operations cannot 
be serviced in the same asynchronous way as write operations



8/6/2008 HEC-FSIO 2008 4

Update-Aware Interface
A new interface: 
update(target_disk_address, in_buffer, ptr_update_fn)
Modify a disk block by applying an update function (insert, 
delete, modify) using an input buffer as the argument

Why is this interface useful
Provides more scheduling flexibility because reads in 
update operations can be serviced asynchronously
Enables higher batching efficiency for disk write 
operations: The disk scheduler can directly invoke 
application-specific modifications on disk blocks



8/6/2008 HEC-FSIO 2008 5

Batching Operations Using 
Sequential Commit 

Given an update operation
Log the update operation
Buffer it in a queue for batching 
Sequentially commit them to disk

Advantages: 
More efficient use of physical memory, which is used for 
batching operations rather than caching disk blocks
Disk accesses used in committing updates are sequential
No impact on read performance 
Applicable to inserts, deletes and modifications



8/6/2008 HEC-FSIO 2008 6

How It Works
……input

requests

sequentially
commit

on-disk data
structure

in-memory 
operation queue



8/6/2008 HEC-FSIO 2008 7

Low-Latency Space-Efficient 
Disk Logging

Disk geometry-aware Disk Array Logging
Implements “write to where the disk head happens to be”
semantics with logical disk write batching
Supports multiple physical writes per disk track
Leverages multiple disks to mask track-to-track seek delays

Performance (five 7200RPM IDE disks connected 
through Promise Ultra100 TX2 IDE controller)

12500 4KB logical disk writes with 1.8 msec average latency 
for each logical write
Space utilization: 70%



8/6/2008 HEC-FSIO 2008 8

Example
A B-Tree index facing an input workload with 
random record insertions and updates

Each B-tree index update request is implemented as a disk 
update operation of a leaf index page
Disk update operations against leaf index pages are batched and 
committed sequentially
Latency is not compromised because of low-latency logging
Throughput is optimized because of batching and sequential 
commit

Same principle can be applied to other database 
index structures such as Hash Table, R Tree, Kd tree, 
etc.



8/6/2008 HEC-FSIO 2008 9

BOSC vs. TPIE 



8/6/2008 HEC-FSIO 2008 10

BOSC-based Block-Level CDP



8/6/2008 HEC-FSIO 2008 11

Summary
Insight: Exposing an entire disk block update operation 
to the disk scheduler provides more scheduling 
flexibility (asynchronous read) and enables higher disk 
access efficiency (sequential commit)
Research questions:

How far can this approach go?
Extension to network storage system and other higher-level 
operations
Interactions with concurrency control and failure recovery

How to integrate BOSC with data-intensive computing 
infrastructure such as Apache Hadoop and Column-based 
DBMS 



8/6/2008 HEC-FSIO 2008 12

Questions?

Thank You!

chiueh@cs.sunysb.edu
http://www.ecsl.cs.sunysb.edu


	An Update-Aware Disk Access Interface for High-Throughput Database Indexes
	 Random Index Update Workload
	Conventional Disk Access Interface
	Update-Aware Interface
	Batching Operations Using Sequential Commit 
	How It Works
	Low-Latency Space-Efficient Disk Logging
	Example
	 BOSC vs. TPIE 
	BOSC-based Block-Level CDP
	Summary
	�Questions?

