
Standards
Update

POSIX IO
pNFS

OSDv2
Brent Welch, Panasas Inc.

HECIWG-FSIO 2007

APIs for HPC IO

• POSIX IO APIs (open, close, read, write, stat) have
semantics that can make it hard to achieve high
performance when large clusters of machines access
shared storage.

• A working group (see next slide) of HPC users has
drafted API additions for POSIX that will provide
standard ways to achieve higher performance.
– HECEWG – High End Computing Extensions Working Group

• Primary approach is either to relax semantics that can be
expensive, or to provide more information to inform the
storage system about access patterns.

HPC POSIX Enhancement Areas

• Metadata
– optional attributes, bulk attributes
– statlite(), readdirplus(), readdirlite()

• Coherence
– last writer wins and other such things can be optional
– lazyio_propogate(), lazyio_synchronize()

• Shared file descriptors
– file opens for cooperating groups of processes
– openg(), openfh()

• Ordering
– stream of bytes idea needs to move towards distributed vectors

of units
– readx(), writex()

Contributors
• http://www.opengroup.org/platform/hecewg/
• Lee Ward - Sandia National Lab
• Bill Lowe, Tyce McLarty – Lawrence Livermore National Lab
• Gary Grider, James Nunez – Los Alamos National Lab
• Rob Ross, Rajeev Thakur, William Gropp - Argonne National Lab
• Tom Ruwart- U of Minnesota/IO Performance
• Roger Haskin – IBM
• Brent Welch, Marc Unangst - Panasas
• Garth Gibson- CMU/Panasas
• Alok Choudhary – Northwestern U
• Many Others…

statlite, fstatlite,lstatlite – Optional Attributes

• Syntax
– int statlite(const char *file_name, struct statlite *buf);

int fstatlite(int filedes, struct statlite *buf);
int lstatlite(const char *file_name, struct statlite *buf);

• Description
– This family of stat calls, the lite family, is provided to allow for file

I/O performance not to be compromised by frequent use of stat
information lookup. Some information can be expensive to
obtain when a file is busy.

– They all return a statlite structure, which has all the normal fields
from the stat family of calls but some of the fields (e.g., file size,
modify time) are optionally not guaranteed to be correct.

– There is a litemask field that can be used to specify which of the
optional fields you require to be completely correct values
returned.

readdirplus & readdirlite
read dir and attributes

• Syntax
struct dirent_plus *readdirplus(DIR *dirp);
int readdirplus_r(DIR *dirp, struct dirent_plus *entry, struct

dirent_plus **result);
struct dirent_lite *readdirlite(DIR *dirp);
int readdirlite_r(DIR *dirp, struct dirent_lite *entry, struct dirent_lite

**result);

• Description
– readdirplus(2) and readdirplus_r(2) return a directory entry

plus lstat(2) results (like the NFSv3 READDIRPLUS command)
– readdirlite(2) and readdirlite_r(2) return a directory entry plus

lstatlite(2) results

O_LAZY - Lazy I/O data integrity

• Specify O_LAZY in flags argument to open(2)
• Requests lazy I/O data integrity

– Allows network filesystem to relax data coherency requirements to
improve performance for shared-write file

– Writes may not be visible to other processes or clients until
lazyio_propagate(2), fsync(2), or close(2) is called

– Reads may come from local cache (ignoring changes to file on
backing storage) until lazyio_synchronize(2) is called

– Does not provide synchronization across processes or nodes –
program must use external synchronization (e.g., pthreads, XSI
message queues, MPI) to coordinate actions

• This is a hint only
– if filesystem does not support lazy I/O integrity, does not have to do

anything differently
– {LAZY_ALIGNMENT} pathconf() setting indicates optimal

granularity

openg – Map file name to portable file handle

• Syntax
– int openg(char *path, int flags, fh_t *handle, int mode);

• Description
– The openg() function opens a file named by path according to

flags (e.g., O_RDWR). It returns an opaque file handle
corresponding to a file descriptor. The intent is that the file
handle can be transferred to cooperating processes and
converted to a file descriptor with openfh().

– The lifetime of the file handle is implementation specific. For
example, it may not be valid once all open file descriptors
derived from the handle with openfh() have been closed.

openfh – portable file handle
to IO channel

• Syntax
– int openfh(fh_t *fh);

• Description
– The file offset used to mark the current position within the file

shall be set to the beginning of the file.
– The file status flags and file access modes of the open file

description shall be set according to those given in the
accompanying openg().

– The largest value that can be represented correctly in an object
of type off_t shall be established as the offset maximum in the
open file description.

readx writex – memory vector to/from file vector

• Syntax
– ssize_t readx(int fd, const struct iovec *iov, size_t iov_count,

struct xtvec *xtv, size_t xtv_count);
– ssize_t writex(int fd, const struct iovec *iov, size_t

iov_count, struct xtvec *xtv, size_t xtv_count);

• Description
– Generalized file vector to memory vector transfer. Existing

readv(), writev() specify a memory vector and do serial IO. The
new readx(), writex() calls also read/write strided vectors to/from
files.

– The readx() function reads xtv_count blocks described by xtv
from the file associated with the file descriptor fd into the
iov_count multiple buffers described by iov. The file offset is not
changed.

– The writex() function writes at most xtv_count blocks described
by xtv into the file associated with the file descriptor fd from the
iov_count multiple buffers described by iov. The file offset is not
changed.

Declined Features

• Layout control
– API to tune data layout within the clustered data storage devices

• lockg
– Group lock for cooperating notes to fence a file from naive

access

• statlite
– Existing fstatat() Linux API

may be morphed to do what
we wanted, and the idea of
“fuzzy” attribute values not
widely appreciated

POSIX ACLs –> New NFSv4 Semantics

• Legitimize NFSv4 ACLs in POSIX, allowing users to
choose methodology and over time maybe POSIX ACLs
will fade away.
– Note that “POSIX ACLS” are really only a proposed part of the

standard and not widely implemented or used
– NFSv4 ACLs are aligned with the Windows ACL model, which is

more widely used and more sensible
– The two models differ in how ACLs are inherited, and in the rules

for processing a long set of ACE (access control entries)

• draft-falkner-nfsv4-acls-00.txt is an Internet Draft from
Sun that explains how they are exposing NFSv4 ACLs
for Solaris 10.

POSIX HPC IO
• statlite, fstatlite

– optional attributes
• readdirplus, readdirlite

– expose NFS bulk attribute op
• O_LAZY , lazyio_propogate
lazyio_synchronize,
– Hint to buffer cache management

• openg, openfh
– expose file handles to applications

• readx, writex
– memory vector to/from file vector

• http://www.opengroup.org/platform/hecewg/

NFSv4 and pNFS

• NFS created in ’80s to share data
among engineering workstations

• NFSv3 widely deployed
• NFSv4 eight years in the making, lots of new stuff

– Integrated Kerberos (or PKI) user authentication
– Integrated file locking
– ACLs (hybrid of Windows and POSIX models)

• NFSv4.1 adds even more
– Details learned from early NFSv4.0 experience
– pNFS for parallel I/O
– Directory delegations for efficiency
– Sessions for better at-most-once semantics

pNFS: The standard for parallel NAS
• pNFS is an extension to the Network File System v4

protocol standard
• Allows for parallel and direct access

– From Parallel Network File System clients
– To Storage Devices over multiple storage protocols
– Moves the Network File System server out of the data path

…direct, parallel data paths…

Metadata

Management

NFSv4.1
Server(s)

Storage
Block (FC) /

Object (OSD) /
File (NFS)

pNFS
Clients

pNFS Layouts

• Client gets a layout from the NFS Server
• The layout maps the file onto storage devices and addresses
• The client uses the layout to perform direct I/O to storage
• At any time the server can recall the layout
• Client commits changes and returns the layout when it’s done
• pNFS is optional, the client can always use regular NFSv4 I/O

Clients
Storage

NFSv4.1 Server

layout

pNFS Client

• Common client for different storage back ends
• Wider availability across operating systems
• Fewer support issues for storage vendors

Client Apps

Layout
Driver

pNFS Client

pNFS Server

Cluster
Filesystem

1. SBC (blocks)
2. OSD (objects)
3. NFS (files)
4. PVFS (user level)
5. Something new…

Layout metadata
grant & revoke

NFSv4.1

pNFS Protocol Operations

• LAYOUTGET
– (filehandle, type, byte range) -> type-specific layout

• LAYOUTRETURN
– (filehandle, byte range) -> server can release state about the

client

• LAYOUTCOMMIT
– (filehandle, byte range, updated attributes, layout-specific info) ->

server ensures that data is visible to other clients
– Timestamps and end-of-file attributes are updated

• GETDEVICEINFO
– Map deviceID in layout to type-specific addressing information

pNFS Protocol Callbacks

• NFS Version 4 servers are “stateful”, and they generate
callbacks to clients to reclaim state about delegated
locks and delegated layouts
– pNFSv4.1 adds these callback operations

• CB_LAYOUTRECALL
– Server tells the client to stop using a layout, or all layouts

• CB_RECALL_ANY
– Server tells the client to release delegations of its own choosing,

it order to let the server reduce the amount of state is is
maintaining

Key pNFS Participants

• Panasas (Objects, based on Panasas Storage Cluster OSDs)
• Network Appliance (Files over NFSv4)
• IBM (Files, based on GPFS)
• EMC (Blocks, based on HighRoad MPFSi)
• Sun (Files over NFSv4)
• U of Michigan/CITI (Files over PVFS2, Files over NFSv4)

Current Status

• pNFS is part of the IETF NFSv4
minor version 1 standard draft
– draft-ietf-nfsv4-minorversion1-13.txt
– Weekly editorial review meetings started this May
– Anticipate working group “last call” this October
– Anticipate RFC being published late Q1 2008

• Prototype interoperability testing began in 2006
– Connect-a-thon and Bake-a-thon multi-vender testing sessions two

or three times a year.
– March 2007 San Jose. June 2007 Austin. October 2007 Ann Arbor.

• Expect Linux integration into kernel.org by late 2008
• Expect other vendor releases by late 2008

Object Storage Architecture

• Raises storage’s level of abstraction
– From logical blocks to objects (object is a container for data and

attributes)
– Allows storage to understand how different blocks of a object are related
– Provides storage with necessary info to optimize storage resources

• An evolutionary improvement to standard (SCSI) storage interface

Block Based Disk Object Based Disk

Source: Intel

Operations:
Create object
Delete object
Read object
Write object
Get Attribute
Set Attribute

Addressing:
[object, byte range]

Allocation:
Internal

Operations:
Read block
Write block

Addressing:
Block range

Allocation:
External

Object Storage Timeline

CMU NASD Lustre

NSIC NASD SNIA/T10 OSD OSD V1
Standard

Panasas

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

• Started with NSIC NASD research 1995-1999
– HP, IBM, Quantum, STK, Seagate, and CMU
– Eventually became SNIA Technology working

group in ‘99
• 45 participating companies

• 1999 moves to SNIA/T10 working group
• 1/2005: ANSI ratifies V1 T10 OSD standard

(ANSI/INCITS 400-2004)
– SNIA TWG already working on OSD V2 features

• Snapshots, import/export, multi-object
capabilities and extended attributes

IBM / Seagate / Emulex
OSD V1

Prototype

OSD
V2

T10 OSD V2.0 Work in Progress

• Collections and Multi-object collection operations
– Single command instructs OSD to operate on set of objects

• Snapshot support
– Copy-on-write for objects, collections of objects

• Efficient error handling
– Fast error detection

and recovery
– Error handling for

multi-object operations

Collections

• OSD Collection Object is an object used to store a list of
user object IDs

• User objects are added to or removed from a collection by
performing a SETATTR on the user object’s collection page
– Enables collection manipulation as side effect of other command

(e.g., WRITE)
• Use case 1: Fast Index

– Transaction needs to record all objects it touches
– Using piggyback SETATTR(into collection X) to add each object into

the collection as the object is dirtied
– If client fails (e.g., reboots), it can discover which objects are dirty by

listing the collection
• Use case 2: List of related objects

– EX: Pseudo directory of all MP3 objects
• Basic collection commands

– CREATE COLLECTION, REMOVE COLLECTION

Multi-object Operations

• GET MEMBER ATTRIBUTES
– Returns the specified attribute(s) from every object listed in the

collection

• SET MEMBER ATTRIBUTES
– Sets the specified attribute(s) on every object listed in the

collection

• REMOVE MEMBER OBJECTS
– Deleted every user object listed in the collection

• QUERY
– Match against one or more specified <attribute, value> pairs,

returning the list of a user objects that successfully matched

• Ordering of internal command processing is unspecified
– Allows for efficient disk-directed processing

OSD Snapshot
• OSD V2.0 defines snapshots to be point-in-time copies

of partitions
– Used partition as basis for snapshot because partitions are the

basic unit of space management
• OSD keeps list of snapshots

– parent / child relationships in snapshot attribute page
• Snapshots may be implemented as

– Efficient copy-on-write
– Sync byte-by-byte copy
– Async byte-by-byte copy

• Set of snapshot commands
– CREATE, DELETE SNAPSHOT
– REFRESH, RESTORE SNAPSHOT
– READDIFF, READMAP

(peek under object abstraction)

Error Handling – Damaged Objects

• Objects can be damaged for several reasons, including media
defects and software bugs

• Manager should be alerted when a damaged object is detected
– Proactively: OSD sends message to manager
– Discovered: Object damage is recorded inside OSD and may be

queried by manager
• OSD marks damaged objects

– Specific object is fenced (topmost bit of object version # is set)
• Prevents client access to object until manager can examine object

– Partition and root attribute set to timestamp of latest discovered damage
• Manager can poll timestamps to discover new damage has been

detected by OSD

OSD impact on iSCSI stack

• Large CDB
– OSD commands are big (256 bytes), using the extended CDB

format
– E.g., Linux normally has small in-line struct, now keeps a pointer

to large CDB

• Bi-Directional Data Transfer
– Three buffers involved in a command:

• Data payload
• Piggy-back set attributes
• Piggy-back get attributes

• Open Solaris, Linux support (patches available)
– Panasas working with Linux maintainers to push changes

through iSCSI / SCSI / Block layers

Status

• SNIA working group working through issues
• SNIA goal is to complete OSDv2 document in Fall 2007

– There will be a general call for comments from SNIA members
– After this is goes up to the ANSI T10 Standards body

