
HECURA: THE SERVER PUSH-IO
ARCHITECTURE FOR HIGH-END COMPUTING

Xian-He Sun
William Gropp, Rajeev Thakur

Illinois Institute of Technology
Argonne National Laboratory

sun@iit.edu

The Problem: I/O Bottleneck

IIT & ANL2

Poor Parallel I/O performance
for complex non-contiguous
access
Improving the performance of
large number of small I/O
requests is a necessity
Prefetching – fetch data before
a client demands for it
Limitations of Existing
Prefetching

Conservative and limited to static
prediction strategies
No prediction strategy on when
to prefetch
Only works for simple access
patterns with locality

08/07/2007

The Challenge Of Prefetching

IIT & ANL3

Move data closer to the processor before it is demanded
Challenges

What data should be prefetched?
Costly, only use the simple one

When should prefetching occur?
Costly, no try

08/07/2007

time time

I/O Compute I/O Compute I/O Compute ComputeCompute

Prefetch Prefetch

Our Solution: File Access Server (FAS)

08/07/2007IIT & ANL4

Trade computing power with data access
A “dedicated” server pro-actively “pushes” required data in time

Push: data is sent before the client’s I/O request
In time: data arrives the destination within a window of time

Use of adaptive and advanced prediction algorithms
Selects I/O access prediction algorithms adaptively

Prefetch Engine
What to prefetch
When to prefetch

Pushing data
Server issues prefetch instructions
Pushes the data from disk to prefetch cache at client

FAS Enabled Parallel I/O

5

File Access Server is on
I/O servers
Push data from disk to
compute nodes

08/07/2007IIT & ANL

6

Research Team
PI and Co-PIs: Drs. Xian-He Sun, Bill Gropp, Rajeev Thakur
1 full-time postdoc researcher: Dr. Surendra Byna
2 Ph.D. students: Yong Chen, Gregor Tamindzija

Dr. Byna is located at ANL
Dr. Sun is an ANL guest faculty, Mr. Chen has a long term ANL pass

Communication
Push-IO Wiki
Biweekly Meeting at Argonne

08/07/2007IIT & ANL

Project Organization
One Year Achievement

Research Activity

7

Survey of applications and benchmarks
Software architecture

Integrated global design
Low-level component design
New component: Helper thread

What data to fetch
Pattern classification
Prediction algorithm selection

Implementation
Trace collection
Data access pattern identification
Prediction algorithm
Client cache
Pre-execution threads

08/07/2007IIT & ANL

Survey: I/O benchmarks and applications

8

Studied varies benchmarks to find large number of
small I/O accesses, complex I/O patterns
Benchmarks

pio-bench, mpi_tile_io, mpi_io_test, flash-io-bench, NPB BTIO, LU

Applications
mpqc, NaSt3dGP, mpiBLAST
CCSM (Community Climate System Model) application

Suggestions on more applications with complex I/O patterns
are welcome

08/07/2007IIT & ANL

Software Architecture of FAS (implementation)

9

On each I/O node of PVFS, FAS
observes I/O accesses
predicts future access
pushes predicted data into a separate client prefetch cache
This design is for one server and one client

08/07/2007IIT & ANL

Using Pre-execution Hints

10

Planning on using pre-execution hints
Identify future I/O accesses via speculatively pre-executing slices of code
Pre-execution thread generation by using a Source-to-source compiler

Helper threads run ahead of actual execution

08/07/2007IIT & ANL

Adaptive and Aggressive Prefetching

11

Multi-dimensional
location of data, the amount of data, the mode of accessing data,
and strides
Time between any two accesses, between successive accesses to a
specific data block

Aggressive Prefetching
Overhead to predict the future accesses is no longer a issue
New aggressive methods to predict irregular data accesses

Adapt a prefetch strategy based on the data access pattern
Reduce prediction time by using hints provided by compiler
and application/user

08/07/2007IIT & ANL

12

Comprehensive I/O access pattern classification

Spatial Patterns

Contiguous
Non-contiguous

Fixed strided
2d-strided
Negative strided
Regular kd-strided
Random strided
Combination of contiguous and

non-contiguous patterns

Repetition

Single occurrence
Repeating

Request size

Fixed
Variable

Small
Medium
Large

Temporal Intervals

Fixed
Random

I/O Operation

Read only
Write only
Read/write

Pattern Classification

08/07/2007IIT & ANL

Pattern Prediction Algorithms

13

Simple stride prediction algorithm
k-d stride prediction algorithm
Markov model prediction
Multi-level difference table
Time series analysis
Artificial Neural Networks

08/07/2007IIT & ANL

Prediction Method Selection

14

Selection algorithm for choosing prediction method
Prediction engine has learning, prediction and supervision
states
When a file is opened for file operations, prediction method
enters learning state
Once a steady pattern is found, prediction state calculates
future I/O accesses
Supervision state observes pattern changes and feedback from
traces in order to choose a different prediction algorithm on-
the-fly

08/07/2007IIT & ANL

In the prediction state…

15

Pattern signature: Defines pattern
{init position, dimension, ([{stride pattern}, {request size pattern}, {number of
repetitions pattern}], […]), # of repetitions}
Example: {1024, 1, (4096, 1024, 99), 1}, {2048, 1, (8192, 2048, 99) 1}, {4096, 1,
(16384, 4096, 99),1}, {8192, 1, (32768, 8192, 99),1},
Example: {4096, 2, ([2048, 1024, 1], [6144, 1024, 1]), 99}, {8192, 2, ([4096,
2048, 1], [12288, 2048,1], 99}

Supervision state updates # of reps
As the number of repetitions increase, the sampling distance of trace
observation increases

08/07/2007IIT & ANL

Implementation of FAS

16

Implementation of Prediction Engine
Implementation of creating pre-execution thread
Testing full cycle of FAS

Test results will be published

Implementation of hints pool and using hints

Long term goal
Implementation FAS into PVFS2

08/07/2007IIT & ANL

17

Capturing I/O requests at clients
File I/O calls

Wrapper functions for open, read, fread, fseek, and
close

Using Profile MPI (PMPI) to wrap the following MPI-
IO functions

MPI_File_read, MPI_File_iread, MPI_File_read_at,
MPI_File_read_all, MPI_File_seek

Fields of I/O Request Trace Buffer
• Process ID, File Descriptor, File Position, Number of

bytes, Timestamp, File operation

I/O Access Tracing

08/07/2007IIT & ANL

18

Proc ID Rank File # File Pos # of Bytes Time(s) I/O Op

===

29074 0 16 0 1024 7.501304 MPI_READALL

29074 0 16 2048 1024 7.545113 MPI_READALL

29074 0 16 8192 1024 7.588820 MPI_READALL

29074 0 16 10240 1024 7.629080 MPI_READALL

29074 0 16 16384 1024 7.674620 MPI_READALL

29074 0 16 18432 1024 7.717406 MPI_READALL

29074 0 16 24576 1024 7.761096 MPI_READALL

29074 0 16 26624 1024 7.805323 MPI_READALL

29074 0 16 32768 1024 7.849006 MPI_READALL

29074 0 16 34816 1024 7.889342 MPI_READALL

29074 0 16 40960 1024 7.933130 MPI_READALL

29074 0 16 43008 1024 7.977495 MPI_READALL

29074 0 16 49152 1024 8.021255 MPI_READALL

29074 0 16 51200 1024 8.065650 MPI_READALL

29074 0 16 57344 1024 8.109380 MPI_READALL

29074 0 16 59392 1024 8.153768 MPI_READALL

29074 0 16 65536 1024 8.197396 MPI_READALL

29074 0 16 67584 1024 8.241783 MPI_READALL

29074 0 16 73728 1024 8.285514 MPI_READALL

29074 0 16 75776 1024 8.331166 MPI_READALL

29074 0 16 81920 1024 8.373678 MPI_READALL

29074 0 16 83968 1024 8.418154 MPI_READALL

29074 0 16 90112 1024 8.461751 MPI_READALL

Sample trace

pio-bench with nested stride test

2k stride

6k stride

08/07/2007IIT & ANL

Initial Performance Results
Prefetching using offline I/O hints

Testing environment
Collective caching code borrowed from Wei-keng Liao at Northwestern Univ.

Cache size: 32 MB, Cache page size: 64 KB, File system: NFS

19 08/07/2007IIT & ANL

Benchmark Pattern signature # of I/O
Reads

Page
fault rate

(%)

Page fault
rate with
FAS (%)

Prediction
overhead
(seconds)

PIO-Bench, simple strided (4k
stride) {INIT, 1, (4096, 1024, 199)} 200 7% 2% 0.00036

PIO-Bench, simple strided (16k) {INIT, 1, (8192, 1024, 199)} 200 25% 2% 0.00036

PIO-Bench, simple strided (32k) {INIT, 1, (16384, 1024, 199)} 200 50% 2% 0.00036

PIO-Bench, simple strided (>
64k) {INIT, 1, (32768, 1024, 199)} 200 100% 2% 0.00036

PIO-Bench, nested strided (4k,
12k)

{INIT, 2, ({-, 1, (4096, 1)}, {-, 1,
(12288, 1)}, 99)} 200 15% 4% 0.0004

PIO-Bench, nested strided (16k,
48k)

{INIT, 2, ({-, 1, (16384, 1)}, {-,
1, (49152, 1)}, 99)} 200 50% 4% 0.0004

PIO-Bench, nested strided (64k,
192k)

{INIT, 2, ({-, 1, (65536, 1)}, {-, 1,
(196608, 1)}, 99)} 200 100% 4% 0.0004

LU decomposition, out-of-core
(8192 x 8192 double precison

matrix)

{0, 3, ({1049088, 1, (524544, 1)}, {0,
1, (522368, 1)}, {524544, 1,

({518272, (-4096)}, {1, (1)})}, 125}
8252 76% 0% 0.0091

BTIO (Class B, 16 processors) {INIT, 1, (42450944, 5308416,
39)} 40 100% 10% 0.00024

Conclusions

20

Progress
Design of Software Architecture, with new component
Exciting technical finding: pattern, signature, algorithm
Implementation progress well (prediction, pre-execution)
Benefit of Academic-Lab collaboration, more collaboration

Next steps
Finish the one-cycle implementation
Testing and improvement
Include more components, such as the hint generators,
Finish and integrate pre-execution hints
Full development

08/07/2007IIT & ANL

21

Thank you!

Questions?

08/07/2007IIT & ANL

22

Backup slides

08/07/2007IIT & ANL

FAS: COMPONENTS

4/26/2007IIT & ANL23

Prefetch Strategy Selector: adaptively selects an appropriate method to
predict future accesses from

Compiler hints
Post-execution analysis
Pattern prediction algorithms

Hint2Request converter: converts hints to I/O requests and keeps them in
prefetch queue
Tracer: traces I/O requests and stores them in an I/O request trace buffer
Prefetch predictor: decides what data to push using pattern prediction
algorithms
Request generator: decides when to push the data
Data propeller: validates prefetching requests for expiration and issues push
instruction to move data from disk to prefetch cache

More on Pre-execution Hints

24

Pre-execution is useful, when access patterns are unknown or accesses
are irregular or random

An example, where periodic reads (R2, R3 and R4) latency are
completely masked

Pre-execution thread can run
Utilizing idle cycles
Competing with regular computation process
Pre-executing remotely

08/07/2007IIT & ANL

A Simple System: Current Focus

25

Working on understanding I/O access patterns

Developing algorithms for adaptive prefetching method selection

Testing “push” strategy from PVFS to client nodes

08/07/2007IIT & ANL

