
The Wisconsin
PASS Project

Andrea Arpaci-Dusseau,
Remzi Arpaci-Dusseau,
Ben Liblit, Miron Livny,

Michael Swift
University of Wisconsin, Madison



Our Goal:
Develop Techniques

for Building Robust & Reliable
File Systems



Current Efforts



Outline

I/O Shepherding [SOSP ‘07]

NTFS Study [StorageSS ’06 + In Progress]

Error Propagation Analysis [In Progress]

Driver Refactoring [HotOS ’07 + In Progress]

Latent Sector Study [Sigmetrics ‘07]

NFS Study [StorageSS ‘07]



I/O Shepherding

Haryadi Gunawi (Wisconsin),
Vijayan Prabhakaran (MSR),

Shweta Krishnan (Wisconsin),
Andrea Arpaci-Dusseau,
Remzi Arpaci-Dusseau 

(Wisconsin)



Typical Reliability Features

File System

I/O

Fault Handling + Reliability Code



I/O Shepherd

I/O

File System Hooks
Into
File

SystemGeneric Layer:
Could work
Under Many
File Systems

I/O Shepherding



I/O Shepherd
Inputs

• An I/O operation on a particular block type
• e.g., write inode X to address A

• Policy code
• Specifies how I/O should be handled

Shepherd
• Responsible for “care and feeding”

of I/O as dictated by policy code



Specifying Policy: Policy Code
Example code

• ParanoidRead (DiskAddr D, MemAddr M)
if (IOS_Read (D, M) == OK)

return OK;
else 

IOS_Stop(IOS_HALT); // primitive
• RetryPropagateRead (DiskAddr D, MemAddr M)

for (int i = 0; i < RETRY_MAX; i++)
if (IOS_Read (D, M) == OK)

return OK;
return FAILURE;

Code segment per block type
• Enables fine-grained policies

(e.g., different treatment for metadata, data)



Shepherd: Not A Simple 
Layer

Loss of Information:
• Used to know lots of info

about each request
• Shepherd: Add type info to each

request as it flows thru system

I/O Shepherd

File System

File layout:
• Policy wants to

make copy of a block
• Interface to FS layout

and allocation engine

layout

Disk scheduling:
• Policy wants to

read a block or replica
• Disk scheduler must

know possible locations

Disk scheduler

Caching:
• Don’t pollute cache

with multiple copies
• Shepherd must interact

with cache properly

cache



A Multi-Level Policy

inode
checksum

compare
replica

compare

inode
checksum

compare

Time (ms)

inode
checksum

compare
replica

compare
repair

Policy
• Checksum
• Replica
• Semantic 

repair

Everything works

Checksum fails; Replica

Replica fails; Repair



Shepherding Summary
Shepherding goal

• Making reliability a first-class FS concern

Which boils down to
• Simple description of powerful policies
• Efficient implementation

Examples (not shown here):
• Adding checksums, mirrors, parity,

stronger sanity checks
• All well integrated with rest of system

(little overhead)



NTFS Study

Lakshmi Bairavasundaram,
Meenali Rungta,

Andrea Arpaci-Dusseau,
Remzi Arpaci-Dusseau, Mike Swift

(Wisconsin)



The Question
How does a commercial file system

react to corrupt data?

Case study: NTFS
• Modern file system
• Great deal of internal type information
• Also, some FS structure replication



Technique: Pointer Corruption
Fault injection technique: Pointer 

corruption
• Modify each on-disk pointer to point

to each other type of structure
• Observe reaction of file system

DataInodes

Super



Results: Graphical
Boot-MFT0
Boot-MFTM

MFT0-MFT
MFT-Bitmap
MFT0-MFTM

Logfile
RootSecDesc
RootIndxBuf

SDS
SDH

SII
Upcase

DirIndxBuf
FileData

Detects, Recovers
Detects, Doesn’t
Recover

Detects, Corrupts
No Detection,
No Recovery

N/A



Results: Qualitative
Type checking is used frequently

• But often not enough (type overloading)
• Does not work for all types (e.g., FileData)

Limited sanity checks
• Not very consistent

Replication used to recover from corruption
• But sometimes propagates corruption
• And can’t tell difference between target

corruption and pointer corruption
Loss of performance-aiding structures

is catastrophic (could be rebuilt instead)



Error Propagation

Haryadi Gunawi, Cindy Rubio,
Andrea Arpaci-Dusseau,

Remzi Arpaci-Dusseau, Ben Liblit
(Wisconsin)



The Problem
Problem: Lost Errors

• Low-level generates error (EIO)
• Somewhere before it gets reported,

file system loses the error

Causes many problems
• Can’t tell if operation worked
• File system itself can’t detect/recover

How to find where these occur?



The Approach
Static source code analysis

• Look through source code for places
where error codes are lost

Built in CIL framework (from UCB)
• Error generation: Return value or arg
• Constructs channels: Flow of errors

back through call graph
• Determine if channel is “error complete”,

i.e., logs error, or takes recovery action
• All other channels marked “broken”



Results: Example
int sync_blockdev (block_device *) {

int ret = 0, err;
ret = filemap_fdatewrite();
err = filemap_fdatawait();
if (!ret) {

ret = err;
return ret;

}

int journal_recover (journal *) {
int err;
…
sync_blockdev(); // ERROR IGNORED!
…
return err;
}



Overall Results

Results
• Linux ext2, ext3, JFS, ReiserFS
• Numerous paths where errors are lost

(over 90 in ext3 version we analyzed)



Automatic
Driver

Refactoring 

Vinod Ganapathy,
Arini Balakrishnan,

Somesh Jha, Mike Swift
(Wisconsin)



The Problem
Drivers: Major cause of failure in systems

• 85% of failures in Windows XP

Why so bad?
• Fundemantally hard code to get right

• Subtle kernel interfaces
• Concurrency
• Locking

How can we improve this situation?



The Solution
Assumption

• The less kernel code, the better

Microdrivers: Split drivers in two 
• Kernel: performance critical
• Usermode: all other infrequently used 

parts
(e.g., configuration, error handling)

But, how to achieve the split?



Automatic Splitting
Splitter:

• Analyze driver
• Identify “critical root functions” (CRFs)

• Interrupt handling, data transfer
• Also, all routines that are called by CRFs
• Mark all other code as non-critical

Code generator:
• Generate split kernel/user code
• Generate glue code for communication



Preliminary Results
Code removal: How much code can

be moved to user space?
• Network: 72%
• SCSI: 74%
• Sound: 92%

Performance: How is performance 
affected by the split?
• Network: 6% overhead in worst case



Future Directions



Future Directions
Model-Checked Shepherd Policies

• Basic failure policies in place
• Does policy work as intended?

(can we prove that it does?)
• Can we use computational resources

to aid checking? (Condor)

Improved Error Propagation Analysis
• Currently somewhat primitive
• Problems: Asynchronous I/O, 

complex transformations



Future Work
Analyze more file systems

• Sun ZFS
• NFS (Linux implementation)
• A cluster file system (still thinking about

which one …)

Microdrivers
• Full implementation
• More drivers
• Performance analysis



Future Work
Reliability Analysis of WAFL (RAW)

• NetApp Write-Anywhere File System 
(WAFL)

• 15 years of development
• Can we describe its fault-handling policy,

find flaws, etc.? 

Corruption Study
• NetApp failure data
• How often do disks return corrupted data?



People



Current People (Students)
Lakshmi Bairavasundaram (Ph.D.)

• Disk study, NTFS, Corruption
Meenali Rungta (M.S., Google)

• NTFS
Haryadi Gunawi (Ph.D.)

• CFM, Error propagation
Shweta Krishnan (M.S., Cisco)

• CFM
Arini Balakrishnan (M.S., Sun)

• Microdrivers
Cindy Rubio (Ph.D.)

• Error propagation
Andrew Krioukov (Undergraduate)

• RAW



Questions?

www.cs.wisc.edu/adsl


