
IOFSL – I/O Forwarding Scalability Layer
R. D’Amore, P. Beckman, J. Bent, J. Cope, G. Grider, K. Iskra, T. Jones, D. Kimpe, S. Poole,

J. Nunez, K. Ohta, C.M. Patrick, R. Ross, L. Ward, B. Welton

Argonne National Laboratory, Los Alamos National Laboratory, Oak Ridge National Laboratory,
Sandia National Laboratories, University of Chicago, University of Tokyo

Introduction

Modern massively parallel systems exhibit unique I/O architectures and I/O
requirements. For example, compute nodes might not have direct outside
access or might be running microkernels incapable of fully supporting all I/O
functionality. To handle this, I/O forwarding was introduced. The basic idea?

Instead of performing your own I/O, have it done by some other entity
that might be better suited or located.

Example: Blue Gene/P I/O Architecture

IOFSL

IOFSL – I/O Forwarding Scalability Layer
I Portable I/O Forwarding Implementation
I Production Quality – not just a research project
I Currently provides I/O forwarding on most leadership class machines

IOFSL provides features not commonly found in other forwarding
implementations:
I Flexible extensible design: easy to adapt to new systems and to add support

for new filesystems.
I Accelerates I/O research by providing a customizable, open source

implementation.
I Manipulation of I/O requests instead of merely forwarding them; used to

implement optimizations such as request merging and request scheduling.

Event-based Processing

Instead of having a thread working on the completion of a single forwarding
request, threads work on a request until forced to wait, at which point the
thread switches to another request. When a request becomes runnable
again, the process repeats until the request is completed.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 64 128 256 512 1024

A
vg

 B
an

dw
id

th
 (

M
iB

/s
)

Clients

CIOD, non-collective, t=8M
IOFSL, TASK, t=8M

IOFSL, SM, t=8M

IBM BG/P (@ANL)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 128 256 512 1024 2048 4096

A
vg

 B
an

dw
id

th
 (

M
iB

/s
)

Clients

IOFSL, TASK, t=8M
IOFSL, SM, t=8M

XT4, non-collective, t=8M

Cray XT4 (@ORNL)

Advantages:
I Number of threads can be tuned independent of the number of requests
I Less memory and CPU overhead (context switches, thread stacks)

Disadvantages:
I Programming model is non-intuitive
I Debugging is hard
I Increased threshold to contribute code

Request Scheduling and Merging

Example with our GridFTP backend driver:

MPI Application Application

FUSEMPI-IO

WAN

IOFSL Server

GridFTP Server

GridFTP Server GridFTP Server

High-Performance
Storage System

Archival Storage
System

 0

 50

 100

 150

 200

 250

 300

 350

 400

 8 16 32 64 128

A
vg

 B
an

dw
id

th
 (

M
iB

/s
)

Number of Clients

Requesting Scheduling
No Request Scheduling

Data Compression

Observation:
I Many clients talk to a single I/O

forwarder
I Clients generally are idle until the

forwarding server responds
I Compression is typically much

slower than decompression

By using spare CPU time at the clients to compress data sent to the
forwarding server (i.e. writes), the effective network bandwidth increases.

The forwarding server either decompresses before performing the I/O
operation, or (ideally) indicates to the I/O system that the data is already
compressed and passes it on unmodified.

Ongoing Work

We’re working on improving IOFSL. Some of our current projects:

I server side compression
Researching fast compression functions, trading CPU time for a lower
compression ratio, in order to enable compression by the forwarding server.

I collaborative caching
A jointly maintained cache between the forwarders enables new
optimizations (such as request merging between forwarders) and improves
the efficiency of existing optimizations.

I network protocol improvements
Packing data and request information in the same message to reduce the
number of exchanges between clients and forwarding servers. This is
particulary important for applications making many small accesses (such as
FUSE).

I Security Infrastructure
Currently, an IOFSL forwarder executes requests for a single user. Our new
security infrastructure will enable a single forwarder to securely serve
multiple users.

I I/O Tracing and Visualization
Integrating IOFSL with end-to-end I/O tracing and visualization tools, such
as those developed for the NSF HECURA IOVIS / Jupiter project.

Contributing

We welcome all contributions and collaborations:

I IOFSL Project website: http://www.iofsl.org/
I IOFSL Wiki and Developer website:
http://trac.mcs.anl.gov/projects/iofsl/wiki

I IOFSL Public Git repository: http://git.mcs.anl.gov/iofsl

Contact us at io-fwd-devel@lists.mcs.anl.gov

IOFSL Project Website: http://www.iofsl.org

http://www.iofsl.org/
http://trac.mcs.anl.gov/projects/iofsl/wiki
http://git.mcs.anl.gov/iofsl
io-fwd-devel@lists.mcs.anl.gov
http://www.iofsl.org

