
Building High-Performance and Cost-Effective Storage
Systems with Flash Memory based Solid State Drives

Xiaodong Zhang

The Ohio State University
Supported in part by NSF CCF-0913050

Other Contributors: Feng Chen (Ohio State) and Intel Labs

Source: Computer Architecture, Memory System Design, B. Parhami, UCSB0.E+00

1.E+06

2.E+06

3.E+06

4.E+06

5.E+06

6.E+06

1980 1985 1990 1995 2000
A

cc
es

s
Ti

m
e

in
 C

yc
le

s

Performnace Gap

DRAM

DISK

Source: Bryant and O’Hallaron, “Computer Systems: A Programmer’s Perspective", Prentice Hall, 2003

Evolution of Storage and new Demand
2

1956: IBM 305 RAMAC computer
with hard disk (5MB/1,200RPM)

1973: IBM 3340
35-70MB

2007: Hitachi GST
Deskstar 7K1000, 1st 1TB

• Hard disk drive (HDD)
– Major storage device since 1956

• Merits
– Large capacity, low cost

– Most commonly used storage

• Mechanical Nature
– Unsatisfactory performance

– High power consumption

Emerging and
Future

SSD

-100x

Evolution of the 5 Minute Rule

• First version: Jim Gray and Franco Putzolu (1987, SIGMOD)
– Background: disk capacity is low and expensive, latency is not an issue

– Accessing I KB data in disk costs $2,000, but only $5 in main memory

– Rule: pages referenced every 5 minutes should be memory resident

• Second version: Jim Gray and P. Shenoy (2000, ICDE)
– Background: capacity is up 1,000x, bandwidth only 40X, very low price

– 5 minute rule becomes a caching rule for performance due to:

– (1) Disk accesses slow 10X per decade; (2) disk scanning time increases

• A recent version: G. Graefe (CACM, 2009)
– Background: SSD is still expensive, disk space is almost free, low speed

– For small size blocks, 5 minute rule holds between DRAM/SSD

– For very large size blocks, 5 minute rule holds between SSD/disks

3

HDD Improvement has been focused on Density

• Huge capacity disks with low price and small size still have
– Low speed and high energy consumption (current stage)

– High capacity causes high access latency (for more than 10 years)

• Specific issues and concerns
– Capacity/bandwidth increases significantly , so does latency

– Space is almost free, but to access data is increasingly more expensive

– Economic model: a disk should be infrequently accessed for archival

– DRAM buffer can address the performance issues, but not the power

• A fast and low power storage is highly desirable.

4

Flash Memory based Solid State Drive

• Solid State Drive (SSD)
– A semiconductor device

– Mechanical components free

• Technical merits
– Low latency (e.g. 75µs)

– High bandwidth (e.g. 250MB/sec)

– Low power: 0.06 (idle)~2.4w (active)

– Shock resistance

– Lifespan: 100GB/day 5 years (X25-M)

5

Flash Memory based Solid State Drive

• Architecture of solid state drives (SSD)
– Host interface logic – SATA, IDE, SCSI, etc.

– SSD Controller – processor, buffer manager, flash controller

– Integrated/Dedicate RAM buffer

– An array of flash memory packages

SSD

Adapted from USENIX’08 (Agrawal et al.)

Host

Interface

logic

IDE/SATA

SSD Controller

Processor

Buffer

Manager

Flash

ctrl.

RAM buffer
Flash

memory

Flash
memory

Flash
memory

Flash
memory

6

Host

Performance- and Power-Efficient

• 120x SSDs
– 4,200,000 IOPS

– 36GB/sec

– 288 watts

– 3.8TB

– Per SSD
• 250/170MB/sec (R/W)

• 35,000 IOPS (Read)

• 2.4 watts (active)

7

Read
throughput

(IOPS)
115x

Bandwidth
3x

Power Cost
5x

* Adapted from Frank Hardy@Intel 03/07/2009 talk, FC=fiber channel)

• 120x HDDs
– 36,000 IOPS

– 12GB/sec

– 1,452 watts

– 8.8TB

– Per HDD
• 100MB/sec (R/W)

• 300 IOPS

• 12.1 watts (active)

Challenge 1: Affordability
• Flash is about 100x more expensive than disks

8

Source: http://www.hitachigst.com/hdd/technolo/overview/storagetechchart.html

100x
more expensive

We need to find a middle ground between SSD and HDD and
strike a right balance between performance and cost.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

La
te

nc
y

(m
se

c)

Queue Depth

Performance Dynamics on Intel X25-E SSD

Worst Case

Best Case

Challenge 2: Performance Dynamics
• Random read 4KB in the 1024MB space with 1~32 I/O jobs (different data

allocations among flash chips result in different performance)

9

4.2x higher
Latency

* Dell Precision T3400, Intel core2Duo 2.66Ghz, 4GB Memory, Intel X25-E SSD, FC 9, Linux kernel 26.27, PostgreSQL 8.3.4

The worst case

The best case

Average
latency (msec)

Queue Depth (# of
concurrent I/O Jobs)

3,000µs

700µs

• Database query executions

0

20

40

60

80

100

120

140

Q1.1 Q1.2 Q2.2. Q3.2 Q4.3

Sp
ee

du
p

(X
)

Star Schema Benchmark (SSB) Queries on Intel X25-E SSD

Disk

SSD-Baseline

SSD-Optimized

Challenge 3: Resource underutilization

10

* Dell Precision T3400, Intel core2Duo 2.66Ghz, 4GB Memory, Intel X25-E SSD, FC 9, Linux kernel 2.6.27, PostgreSQL 8.3.4

SSD-opt.
(127.2x)

Disk (21min)

SSD-baseline
(27.5x)

79% of the performance
potential is not utilized

The peak performance of SSD can revolutionize the
existing storage systems.

However, the high performance potential of SSD cannot be
automatically tapped without extensive research efforts.

Critical Issues
• Performance dynamics due to the unknown internals

– A systematic effort is needed to timely and accurately detect the
internal structures of the SSDs

• Affordability and limited capacity of SSDs
– A hybrid storage is a best cost- and performance-effective solution

• Underutilized rich and hidden storage resources
– System and application efforts to fully utilize the rich idle/hidden

resources, such as internal parallelism

• Reliability issues caused by wear-out problem of flash
– Technical advances are improving lifespan (e.g. 100GB/day 5 years)

11

Critical Issues
• Performance dynamics due to the unknown internals

– A systematic effort is needed to timely and accurately detect the
internal structures of the SSDs

• Affordability and limited capacity of SSDs
– A hybrid storage is a best cost- and performance-effective solution

• Underutilized rich and hidden storage resources
– An effective solution is desirable to utilize the rich idle/hidden

resources, in particular internal parallelism

• Reliability issues caused by wear-out problem of flash
– Technical advances are improving lifespan (e.g. 100GB/day 5 years)

12

Block I/O layer

File SystemOS
kernel

Device

App.

A Framework for a hybrid storage system

13

Applications

* Collaborated work at Intel® Labs

Block Device Driver

HDD SSDHybrid
Storage HDD SSD

Block Dev.DriverHybrid Dev.Driver

Applications
SSD

Sketcher

• SSD Sketcher – Detecting
SSD internal structures

• Hystor – Providing hybrid
storage services

• Prefetcher – utilizing the
internal resources of SSD

• Other efforts by applications
to fully utilize parallelisms.

Buffer CacheBuffer Cache Informed
Prefetcher

Outline

• Introduction

• Sketching SSD internals

• Hystor: A hybrid storage system

• Exploiting Internal Parallelism

• Conclusion

• Future Work

14

Block I/O layer

File SystemOS
kernel

Device

App.

Hybrid
Storage HDD SSD

Block Dev.DriverHybrid Dev.Driver

Applications
SSD

Sketcher

Buffer CacheBuffer Cache Informed
Prefetcher

Physical data layout in HDD

• Data are stored on the
surfaces of disk platters

• An array of logical block
addresses (LBAs) as a
logical interface

• LBAs are statically
mapped to physical
block addresses (PBAs)
in a almost consist way

15

Host

LBA

0

1

2

3

4

5

6

Read (LBA, size)

Write(LBA, size)

ECC

ECC

ECC

ECC

Contro

ller

RAM

Physical data layout in SSD
16

PBA

91

12

31

28

6

2

1

10

Host

LBA

0

1

2

3

4

5

6

7

• Data are stored in
flash memory chips

• SSD uses the standard
LBA interface to host

• A mapping table tracks
LBA/PBA mappings

• Internal data mapping
is dynamic on the fly97

6

55

4

43

23

21

11

Idle!

Busy!

Idle!

Idle!

The best caseRead (LBA, size)

Write(LBA, size)
The worst case

The physical data mapping is an architectural feature, we
must know the internal structures of SSDs.

Asking for help from SSD manufacturers?

• Intellectual property issues

• Limited unreliable info in specification

• The strictly defined standard interface

17

An example specification

How to get the architectural-level information without
modifying the interface and hardware?

Our approach
• Treat an SSD as a black-box
• Assume a repeatable but unknown pattern

• Inject I/O traffic to probe the device

• Observe the reactions of SSD in B/W and latencies

• Enumerate possible policies based on open documents*

• Speculate the internal structures

18

I/O traffic
Latencies

B/W
*USENIX’08, ISCA’09, etc.

Policy #1

Policy #2

Policy
#1

Match!

A general model
19

Domain #0

Domain #1

Domain #2

Domain #3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

• Domain
– A set of connected chips (how many?)

• 10x domains

• Chunk
– A basic unit of data block (how large?)

• 4KB

• Mapping
– How chunks are allocated from their

LBA to their PBA?

• Write-basedIntel® X25-E SSD

Resource sharing:
e.g. channel, ECC eng.

Interfacing to the system framework

• Chunk size
– Hybrid storage – a basic unit for moving data across SSD/HDD
– File System – align data allocation to chunks
– I/O scheduler – avoid parallel accesses inside a chunk

• Number of domains
– Informed Prefetcher – set a proper concurrency level
– Hybrid storage – set a reasonable number of data migrating threads
– I/O scheduler – decide how many requests should be released

• The mapping policy
– I/O scheduler – insert a randomizer to permutate block allocations
– Applications – estimate physical data layout by observing writes
– Virtual machine – manipulate physical data layout

20

Outline

• Introduction

• Sketching SSD internals

• Hystor: A hybrid storage system

• Exploiting Internal Parallelism

• Conclusion

• Future Work

21

Block I/O layer

File SystemOS
kernel

Device

App.

Hybrid
Storage HDD SSD

Block Dev.DriverHybrid Dev.Driver

Applications
SSD

Sketcher

Buffer CacheBuffer Cache Informed
Prefetcher

Integrating SSD and HDD together

22

• Conquest [USENIX’02]
• SmartSaver [ISLPED’06]
• ReadyBoost [MS’06]
• TurboMemory[ToS’08]
• L2ARC [CACM’08]
• FlashCache [ISCA’08]
• other …

SSD-cached Disk

• Hystor

Disk-cached SSD Hybrid Storage

• Soundararajan [FAST’10]

• Cache-based solutions
– SSD – a secondary-level cache
– HDD– the permanent storage
– Cache replacement policy

• Limitations
– Weak locality memory misses
– Intensive write traffic
– Non-trivial system changes
– High-cost on-line replacement

• Frequent on-access updates
• 10-20x Larger SSD space

Hystor: A cost-efficient hybrid storage*

• A small data set
– Semantically critical – F/S

metadata blocks
– Performance critical – High-

cost data blocks

23

* Collaborated work at Intel® Labs

• A large data set
• Low-priority data (e.g.

movie files)

SSD
High-performance, high-cost

HDD
Low-cost, high-capacity

A prototype system at Intel® Labs for
future storage system solution.

Identifying the high-cost data blocks

• A metric highly correlated to latency
– Latency (optimal)

– Frequency

– Request size

– Reuse distance

– Seek distance

– combinations

24

Percentage of
total latency

Percentage of
total blocks

Latency curve:
optimal

The metric is highly
correlated to

latency

The metric is
uncorrelated to

latency

• A metric highly correlated to latency
– Latency (optimal)

– Frequency

– Request size

– Reuse distance

– Seek distance

– combinations

• Frequently used small blocks

Identifying the high-cost data blocks

25

The best metric:
Frequency/Request size

The prototype system of Hystor*

• Implementation
– Kernel module in the kernel 2.6.25.8

• Core code: 2,500 lines
• Kernel-level monitor: 4,800 lines

– 50+ lines in stock kernel

• A pseudo device driver
– /dev/mapper/hybrid

• Inline Tracer
– Intercepts I/O operations

• Monitor
– Updates the block table

• Data Mover
– Reorganizes data layout

memory

File System

Generic Block Layer

Block Device Mapper

HDD HDD SSD

Block Device Driver

Inline Tracer Log

Monitor

Block table

Data Mover
Migration

Requests

The prototype system of Hystor

26

* Prototyped at Intel® Labs

Future plan: Prototyping a hardware
hybrid storage system

Outline

• Introduction

• Sketching SSD internals

• Hystor: A hybrid storage system

• Exploiting Internal Parallelism

• Conclusion

• Future Work

27

Block I/O layer

File SystemOS
kernel

Device

App.

Hybrid
Storage HDD SSD

Block Dev.DriverHybrid Dev.Driver

Applications
SSD

Sketcher

Buffer CacheBuffer Cache Informed
Prefetcher

Internal parallelism – a hidden resource

• Internal Parallelism
– An important hidden resource of SSD

– I/O parallelism is the key to utilizing the idle resources

28

Fl
as

h
m

em
or

y
co

nt
ro

lle
r

Flash

Pkg.

Flash

Pkg.

Flash

Pkg.

Flash

Pkg.

die die die die

die die die die

pl
an

e
pl

an
e

pl
an

e
pl

an
e

pl
an

e
pl

an
e

pl
an

e
pl

an
e

pl
an

e
pl

an
e

pl
an

e
pl

an
e

pl
an

e
pl

an
e

pl
an

e
pl

an
e

Channel #0

Channel #1

0

50

100

150

200

250

1 5 9 13 17 21 25 29

Ba
nd

w
id

th
 (M

B/
se

c)

Queue Depth

I/O parallelism on Intel X25-E SSD

Seq. Read

Rnd Read

Seq. Write

Rnd. Write

5x

Serial I/O
slow

I/O

Computation

I/O

Computation Parallel I/O
Fast, but difficult

I/O

Comp.

I/O

Comp.

How to parallelize I/O?

How to parallelize I/O operations?

• Initial attempt
– Automatically generate parallelized I/O code

• Heavily involved application redesign
• Hardly be practical to rewrite all applications

• Alternative: prefetching
– Leverage domain knowledge of applications
– Automatically generate parallel prefetch I/O
– Less speedup, more practical

29

SSD-optimized Informed Prefetch (S.I.P.)

• Application
– Set a correlated data set

– Minimize changes to application

• Prefetcher
– An on-line kernel daemon thread

– Maintains correlated data information

– Leverages idle time to prefetch correlated data via parallel I/O
• On-demand prefetching

• On-access prefetching

– Important: maintain a proper concurrency level (sketcher)

30

SSD
Sketcher

Interface API Prefetcher

Storage
Manager

I/O interface

Agent Thread

Hybrid Storage

Applications

SSD

Conclusion
• The emerging technology SSD arrives at the right time as we enter the data

explosion era

• We have identified three major critical issues:

– Affordability and limited capacity

– Performance dynamics due to a non-transparent view of internal structures

– Underutilizing rich and hidden storage resources

• To address these issues, we have designed and implemented a system framework
with three major components

– SSD Sketcher – detect internal structures (at the application level)

– Hystor – a hybrid storage management system (in OS kernel and I/O device)

– S.I.P. – an enhancement to help user exploit internal parallelism (in OS kernel)

– High effectiveness is shown by extensive experiments

• Intel® Lab is prototyping it at both software and device level as a consideration for
a future storage system product.

31

Related Publications
• SSD related papers

– [SIGMETRICS’09] "Understanding Intrinsic Characteristics and System
Implications of Flash Memory based Solid State Drives"

– [ISLPED’06] "SmartSaver: Turning Flash Drive into a Disk Energy Saver
for Mobile Computers“

• Other papers on memory and storage systems
– [USENIX’07] "DiskSeen: Exploiting Disk Layout and Access History to

Enhance I/O Prefetch"

– [FAST’05] "DULO: An Effective Buffer Cache Management Scheme to
Exploit Both Temporal and Spatial Localities"

– [USENIX’05] "CLOCK-Pro: An Effective Improvement of the CLOCK
Replacement"

32

33

Xiaodong Zhang
: zhang@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~zhang

mailto:zhang@cse.ohio-state.edu�

	Building High-Performance and Cost-Effective Storage Systems with Flash Memory based Solid State Drives
	Evolution of Storage and new Demand
	Evolution of the 5 Minute Rule
	HDD Improvement has been focused on Density
	Flash Memory based Solid State Drive
	Flash Memory based Solid State Drive
	Performance- and Power-Efficient
	Challenge 1: Affordability
	Challenge 2: Performance Dynamics
	Challenge 3: Resource underutilization
	Critical Issues
	Critical Issues
	A Framework for a hybrid storage system
	Outline
	Physical data layout in HDD
	Physical data layout in SSD
	Asking for help from SSD manufacturers?
	Our approach
	A general model
	Interfacing to the system framework
	Outline
	Integrating SSD and HDD together
	Hystor: A cost-efficient hybrid storage*
	Identifying the high-cost data blocks
	Identifying the high-cost data blocks
	The prototype system of Hystor*
	Outline
	Internal parallelism – a hidden resource
	How to parallelize I/O operations?
	SSD-optimized Informed Prefetch (S.I.P.)
	Conclusion
	Related Publications
	Slide Number 33

