
Multidimensional & String Indexes
for Streaming Data

Michael A. Bender
Stony Brook
Tokutek, Inc.

Bradley C. Kuszmaul
MIT

Tokutek, Inc

Martin Farach-Colton
Rutgers

Tokutek, Inc.

Charles E. Leiserson
MIT

Multidimensional & String Indexes for Streaming Data

Multidimensional and String Indexes for Streaming Data

Millions of data elements arrive per sec from sensors

• Sensors may measure mouse clicks on a website, report
network attacks, count point-of-sales data, make temperature
readings, etc.

2

Disk

Sensor

Sensor

Sensor

Sensor

Query

Query

Query

per second

Millions of data
elements arrive

Query recently
arrived data
using indexes.

Multidimensional & String Indexes for Streaming Data

Multidimensional and String Indexes for Streaming Data

Because we want to query using indexes, we want B-
tree-like functionality, but better performance.

• B-trees support ~100 inserts per sec. per disk in worst case.

• We would need many tens of thousands of disk to index the
data stream using B-trees.

3

These B-tree nodes reside in
memory

Most inserts require I/Os.

Multidimensional & String Indexes for Streaming Data

Multidimensional and String Indexes for Streaming Data

We studied this problem previously for HECURA.
• The cache-oblivious streaming B-tree indexes high-entropy

(e.g., random) data 10x-100x faster than a B-tree.
• Asymptotically better: O((logBN)/B) I/Os vs. O(logBN) per insert.

4

[Bender, Farach-Colton,
Fineman, Fogel,

Kuzmaul, Nelson 07]

0!

5,000!

10,000!

15,000!

20,000!

25,000!

30,000!

35,000!

40,000!

45,000!

50,000!

0! 200,000,000! 400,000,000! 600,000,000! 800,000,000! 1,000,000,000!

R
o

w
s
/S

e
c

o
n

d
!

Rows Inserted!

iiBench - 1B Row Insert Test!

InnoDB!

TokuDB!

Multidimensional & String Indexes for Streaming Data

Multidimensional and String Indexes for Streaming Data

We studied this problem previously for HECURA.
• The cache-oblivious streaming B-tree indexes high-entropy

(e.g., random) data 10x-100x faster than a B-tree.
• Asymptotically better: O((logBN)/B) I/Os vs. O(logBN) per insert.

• We transferred the technology to Tokutek, Inc..
Used in TokuDB storage engine for MySQL.

5

[Bender, Farach-Colton,
Fineman, Fogel,

Kuzmaul, Nelson 07]

0!

5,000!

10,000!

15,000!

20,000!

25,000!

30,000!

35,000!

40,000!

45,000!

50,000!

0! 200,000,000! 400,000,000! 600,000,000! 800,000,000! 1,000,000,000!

R
o

w
s
/S

e
c

o
n

d
!

Rows Inserted!

iiBench - 1B Row Insert Test!

InnoDB!

TokuDB!

Multidimensional & String Indexes for Streaming Data

Multidimensional and String Indexes for Streaming Data

Multidimensional data
• Geometric data, sparse matrices, OLAP cube, MDX, ...

6

Multidimensional & String Indexes for Streaming Data

Multidimensional and String Indexes for Streaming Data

Strings
• File names, URLs, SHA hashes, query strings, webpages,

DNA, etc.

7

Multidimensional & String Indexes for Streaming Data

Multidimensional and String Indexes for Streaming Data

The string B-tree indexes strings on external storage

• Impressive queries, O(|L|+logBN) I/Os per search/insert.
• But inserts are slow as B-trees.

Two aspects to strings:
• Strings are keys having variable sizes.
• Even when keys have same size, string B-trees deliver

performance gains.

8

 [Ferragina, Grossi 98] [Bender, Farach-Colton, Kuszmaul 06]. [Brodal, Fagerberg 06]

Multidimensional & String Indexes for Streaming Data

Multidimensional and String Indexes for Streaming Data

Can we build a string streaming B-tree?
(can we make is cache oblivious, i.e., platform independent?)

Interesting case for streaming data:
• strings are smaller than the natural block size B of the disk but

larger than unit size.
• If strings are large, insert cost is dwarfed by cost to scan key

We have some components:
• cache-oblivious streaming B-tree
• cache-oblivious string B-tree
• B-tree with different-size keys

9

 [Ferragina, Grossi 98] [Bender, Farach-Colton, Kuszmaul 06]. [Brodal, Fagerberg 06]

[Bender, Farach-Colton, Kuszmaul PODS 06].

[Bender, Farach-Colton,Fineman, Fogel, Kuzmaul,
Nelson SPAA 07]

[Bender, Kuszmaul PODS 10].

1 B

Multidimensional & String Indexes for Streaming Data

Multidimensional and String Indexes for Streaming Data

Can we build a string streaming B-tree?
(can we make is cache oblivious, i.e., platform independent?)

Interesting case for streaming data:
• strings are smaller than the natural block size B of the disk but

larger than unit size.
• If strings are large, insert cost is dwarfed by cost to scan key

We have some components:
• cache-oblivious streaming B-tree
• cache-oblivious string B-tree
• B-tree with different-size keys

10

 [Ferragina, Grossi 98] [Bender, Farach-Colton, Kuszmaul 06]. [Brodal, Fagerberg 06]

[Bender, Farach-Colton, Kuszmaul PODS 06].

[Bender, Farach-Colton,Fineman, Fogel, Kuzmaul,
Nelson SPAA 07]

[Bender, Kuszmaul PODS 10].

1 B

Multidimensional & String Indexes for Streaming Data

Multidimensional and String Indexes for Streaming Data

Can we build a string streaming B-tree?
(can we make is cache oblivious, i.e., platform independent?)

Interesting case for streaming data:
• strings are smaller than the natural block size B of the disk but

larger than unit size.
• If strings are large, insert cost is dwarfed by cost to scan key.

We have some components:
• cache-oblivious streaming B-tree
• cache-oblivious string B-tree
• B-tree with different-size keys

11

 [Ferragina, Grossi 98] [Bender, Farach-Colton, Kuszmaul 06]. [Brodal, Fagerberg 06]

[Bender, Farach-Colton, Kuszmaul PODS 06].

[Bender, Farach-Colton,Fineman, Fogel, Kuzmaul,
Nelson SPAA 07]

[Bender, Kuszmaul PODS 10].

1 B

Multidimensional & String Indexes for Streaming Data

Multidimensional and String Indexes for Streaming Data

Can we build a string streaming B-tree?
(can we make is cache oblivious, i.e., platform independent?)

Interesting case for streaming data:
• strings are smaller than the natural block size B of the disk but

larger than unit size.
• If strings are large, insert cost is dwarfed by cost to scan key

We have some components:
• cache-oblivious streaming B-tree
• cache-oblivious string B-tree
• B-tree with different-size keys

12

 [Ferragina, Grossi 98] [Bender, Farach-Colton, Kuszmaul 06]. [Brodal, Fagerberg 06]

[Bender, Farach-Colton, Kuszmaul PODS 06].

[Bender, Farach-Colton,Fineman, Fogel, Kuzmaul,
Nelson SPAA 07]

[Bender, Kuszmaul PODS 10].

1 B

This is what I’m going
to talk about.

Difficulty of Key Search (with Different-Size Keys)

Difficulty of Key Search (with Different-Size Keys)

Multidimensional & String Indexes for Streaming Data

In B-trees in textbooks, all keys have the same size.

Production B-trees support different-size keys...

B-trees with Different-Sized Keys

15

K B

O(log N)ff=B/K

Multidimensional & String Indexes for Streaming Data

In B-trees in textbooks, all keys have the same size.

Production B-trees support different-size keys...

But with no nontrivial performance guarantees.

Rest of talk: Can we give provably good guarantees in
an only slightly modified B-tree?

B-trees with Different-Sized Keys

16

K B

O(log N)ff=B/K

Multidimensional & String Indexes for Streaming Data

Example Showing Problem

17

o

a bbbbbbbb c dddddddd e ffffffff g hhhhhhhh

i jjjjjjjj k llllllll m nnnnnnnn

Multidimensional & String Indexes for Streaming Data

Example Showing Problem

When the length-8 keys are pivots (and the block size
is 8), the tree height is 4:

18

a c e g i k m o

dddddddd

hhhhhhhh

llllllll

bbbbbbbb ffffffff jjjjjjjj nnnnnnnn

o

a bbbbbbbb c dddddddd e ffffffff g hhhhhhhh

i jjjjjjjj k llllllll m nnnnnnnn

Multidimensional & String Indexes for Streaming Data

Example Showing Problem

When the length-1 keys are pivots (and the block size
is 8), the tree height is 2:

Choice of pivot affects the B-tree performance.

19

a c me i k og

bbb
bbb

bb
ddd

ddd
dd

fff
fff

ff
hhh

hhh
hh

jjj
jjj

jj
lll

lll
ll

nnn
nnn

nn

o

a bbbbbbbb c dddddddd e ffffffff g hhhhhhhh

i jjjjjjjj k llllllll m nnnnnnnn

Multidimensional & String Indexes for Streaming Data

Cannot compare first byte of with .

20

Keys are Atomic

bbbbbbbb

o

a bbbbbbbb c dddddddd e ffffffff g hhhhhhhh

i jjjjjjjj k llllllll m nnnnnnnn

Multidimensional & String Indexes for Streaming Data

Cannot compare first byte of with .

Only the comparison function understands the keys.

Keys are opaque. Need to send entire key to comparison
function and store entire key in node.

21

Keys are Atomic

bbbbbbbb

o

a bbbbbbbb c dddddddd e ffffffff g hhhhhhhh

i jjjjjjjj k llllllll m nnnnnnnn

bbbbb
bbb o

a bbbbb
bbb

c
ddddd

ddd
e fffff

fff
g hhhhh

hhh

i jjjjj
jjj

k
lllll

lll
m nnnnn

nnn

Multidimensional & String Indexes for Streaming Data

Cannot compare first byte of with .

Only the comparison function understands the keys.

Keys are opaque. Need to send entire key to comparison
function and store entire key in node.

22

Keys are Atomic

bbbbbbbb

o

a bbbbbbbb c dddddddd e ffffffff g hhhhhhhh

i jjjjjjjj k llllllll m nnnnnnnn

bbbbbbbb

o

a
bbbbbbbb

c
dddddddd

e
ffffffff

g
hhhhhhhh

i
jjjjjjjj

k
llllllll

m
nnnnnnnn

before

after

Multidimensional & String Indexes for Streaming Data

Choice of Pivot Matters For Variable-Size Keys

Example: N keys with average size <2.
• N/B keys with size B and N-N/B keys with size 1.

Size 1 keys as pivots: optimal.

23

B

O(log N)B

B-11 B

Multidimensional & String Indexes for Streaming Data

Choice of Pivot Matters For Variable-Size Keys

Example: N keys with average size <2.
• N/B keys with size B and N-N/B keys with size 1.

Size 1 keys as pivots: optimal.

24

B

O(log N)B

B-11 B

Multidimensional & String Indexes for Streaming Data

Example: N keys with average size <2.
• N/B keys with size B and N-N/B keys with size 1.

Size B keys as pivots: O(log B) factor worse.

25

O(log N)2

B

B-11 B

Choice of Pivot Matters For Variable-Size Keys

Multidimensional & String Indexes for Streaming Data

Desired Guarantee

Let K be the average key size.

Goal: O(logB/KN) memory transfers per operation.
• Generalizes what happens if keys all have the same size K.

26

Multidimensional & String Indexes for Streaming Data

Desired Guarantee

Let K be the average key size.

Goal: O(logB/KN) memory transfers per operation.
• Generalizes what happens if keys all have the same size K.

Unfortunately, we cannot get this for worst-case
searches, but we’ll get it in expectation.

27

Multidimensional & String Indexes for Streaming Data

Why We Cannot Attain Good Worst-Case Bounds

Example: N keys with average size K<2.
• N/B keys with size B and N-N/B keys with size 1.

28

search: Θ(log N)search: Θ(log N/B) B2

1B

Multidimensional & String Indexes for Streaming Data

Why We Cannot Attain Good Worst-Case Bounds

Example: N keys with average size K<2.
• N/B keys with size B and N-N/B keys with size 1.

•

29

search: Θ(log N)search: Θ(log N/B) B2

1B

O(log N/B)2

B

O(log N)B

Multidimensional & String Indexes for Streaming Data

Why We Cannot Attain Good Worst-Case Bounds

Example: N keys with average size K<2.
• N/B keys with size B and N-N/B keys with size 1.

•

30

search: Θ(log N)search: Θ(log N/B) B2

1B

But we are ok on average: (1-1/B) logBN + (1/B) log2N=O(logBN).

O(log N/B)2

B

O(log N)B

Multidimensional & String Indexes for Streaming Data

Why We Cannot Attain Good Worst-Case Bounds

Example: N keys with average size K<2.
• N/B keys with size B and N-N/B keys with size 1.

31

search: Θ(log N)search: Θ(log N/B) B2

1B

Related work: how to optimize B-tree height

• static (no inserts/deletes)
• DP-based
• (far from our target guarantee)

[Vaishnavi, Kriegel, Wood 80] [Gotleib 81] [Huang, Vishwanathan 90] [Becker 94]

Multidimensional & String Indexes for Streaming Data

Static atomic-key B-tree (only searches)
• Expected leaf search cost:

• Linear construction cost for sorted data:

Some Results

32

O(�K/B� log1+�B/K� N)

O(NK/B)

Multidimensional & String Indexes for Streaming Data

Static atomic-key B-tree (only searches)
• Expected leaf search cost:

• Linear construction cost for sorted data:

Some Results

33

O(�K/B� log1+�B/K� N)

O(NK/B)

Captures K=O(B)
and K≤ Ω(B)

Multidimensional & String Indexes for Streaming Data

Static atomic-key B-tree (only searches)
• Expected leaf search cost:

• Linear construction cost for sorted data:

Some Results

34

O(�K/B� log1+�B/K� N)

O(NK/B)

Captures K=O(B)
and K≤ Ω(B)

Scan bound since
total length= NK

Multidimensional & String Indexes for Streaming Data

Static atomic-key B-tree (only searches)
• Expected leaf search cost:

• Linear construction cost for sorted data:

Dynamic atomic-key B-tree
• Expected leaf search cost :

• Cost to insert/delete/search for key L of random rank (amort):

• Cost to insert/delete/search for key of arbitrary rank:
modification cost is dominated by search cost.

Some Results

35

O(�K/B� log1+�B/K� N+ |L|/B)

O(�K/B� log1+�B/K� N)

O(�K/B� log1+�B/K� N)

O(NK/B)

Captures K=O(B)
and K≤ Ω(B)

Scan bound since
total length= NK

Multidimensional & String Indexes for Streaming Data

Static atomic-key B-tree (only searches)
• Expected leaf search cost:

• Linear construction cost for sorted data:

Dynamic atomic-key B-tree
• Expected leaf search cost :

• Cost to insert/delete/search for key L of random rank (amort):

• Cost to insert/delete/search for key of arbitrary rank:
modification cost is dominated by search cost.

Some Results

36

O(�K/B� log1+�B/K� N+ |L|/B)

O(�K/B� log1+�B/K� N)

O(�K/B� log1+�B/K� N)

O(NK/B)

Captures K=O(B)
and K≤ Ω(B)

Scan bound since
total length= NK

O(|L|/B) is cost to read L into memory

Multidimensional & String Indexes for Streaming Data

Static atomic-key B-tree (only searches)
• Expected leaf search cost:

• Linear construction cost for sorted data:

Dynamic atomic-key B-tree
• Expected leaf search cost :

• Cost to insert/delete/search for key L of random rank (amort):

• Cost to insert/delete/search for key of arbitrary rank:
modification cost is dominated by search cost.

Some Results

37

O(�K/B� log1+�B/K� N+ |L|/B)

O(�K/B� log1+�B/K� N)

O(�K/B� log1+�B/K� N)

O(NK/B)

Captures K=O(B)
and K≤ Ω(B)

Scan bound since
total length= NK

important

O(|L|/B) is cost to read L into memory

For streaming B-tree, should be much less than search cost.

Multidimensional & String Indexes for Streaming Data

Atomic-Key B-tree Intuition

Greedy construction algorithm
• Greedily select pivot elements for the root node
• Proceed recursively on all subtrees of the root.

Intuition
• Pick small keys in root to maximize fanout.
• Pick evenly distributed keys to reduce the search space.

To prove
• Root has a good structure.
• Recursive substructures achieve good performance, even

though subtrees may have different average key sizes.

How fast can we insert?

38

Multidimensional & String Indexes for Streaming Data

Root Construction

1. Divide keys into equal-size groups.

2. Pick (one of the) short keys in each group.

3. Store these keys in root

Satisfies constraints that keys are small and evenly
distributed.

Enables inserts/deletes.

39

aaaa ebbbb ddddccc ff gg iii jj kkkkk llll mmm oooo ppppnhh

< B

e jj

Multidimensional & String Indexes for Streaming Data

What can we tell you about what your hardware can do?

You cannot have 1 I/O/sec/GB (cheaply).

You can insert data in any order at near disk bandwidth.

You can query data fast if the data is organized in the right
order (e.g., has locality for that query).

You must organize your system so queries have locality.
• E.g., find on a file system can be fast if the data is indexed correctly.

You must use indexing to organize data for queries.

Indexing is the currency that we can use to make queries
go faster.

40

