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Millions of data elements arrive per sec from sensors

• Sensors may measure mouse clicks on a website, report 
network attacks, count point-of-sales data, make temperature 
readings, etc.
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Because we want to query using indexes, we want B-
tree-like functionality, but better performance.

• B-trees support ~100 inserts per sec. per disk in worst case.

• We would need many tens of thousands of disk to index the 
data stream using B-trees. 
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These B-tree nodes reside in 
memory

Most inserts require I/Os. 
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We studied this problem previously for HECURA. 
• The cache-oblivious streaming B-tree indexes high-entropy 

(e.g., random) data 10x-100x faster than a B-tree.
• Asymptotically better: O((logBN)/B) I/Os vs. O(logBN) per insert.
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We studied this problem previously for HECURA. 
• The cache-oblivious streaming B-tree indexes high-entropy 

(e.g., random) data 10x-100x faster than a B-tree.
• Asymptotically better: O((logBN)/B) I/Os vs. O(logBN) per insert.

• We transferred the technology to Tokutek, Inc..
Used in TokuDB storage engine for MySQL.  
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Multidimensional data
• Geometric data, sparse matrices, OLAP cube, MDX, ...

6



Multidimensional & String Indexes for Streaming Data

Multidimensional and String Indexes for Streaming Data

Strings 
• File names, URLs, SHA hashes, query strings, webpages, 

DNA, etc.
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The string B-tree indexes strings on external storage

• Impressive queries, O(|L|+logBN) I/Os per search/insert.
• But inserts are slow as B-trees.

Two aspects to strings:
• Strings are keys having variable sizes. 
• Even when keys have same size, string B-trees deliver 

performance gains.
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Can we build a string streaming B-tree? 
(can we make is cache oblivious, i.e., platform independent?)

Interesting case for streaming data: 
• strings are smaller than the natural block size B of the disk but 

larger than unit size. 
• If strings are large, insert cost is dwarfed by cost to scan key

We have some components:
• cache-oblivious streaming B-tree
• cache-oblivious string B-tree
• B-tree with different-size keys 
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This is what I’m going 
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In B-trees in textbooks, all keys have the same size.

Production B-trees support different-size keys... 

B-trees with Different-Sized Keys
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In B-trees in textbooks, all keys have the same size.

Production B-trees support different-size keys...

But with no nontrivial performance guarantees.

Rest of talk: Can we give provably good guarantees in 
an only slightly modified B-tree?

B-trees with Different-Sized Keys
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Example Showing Problem

17
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Example Showing Problem

When the length-8 keys are pivots (and the block size 
is 8), the tree height is 4:
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Example Showing Problem

When the length-1 keys are pivots (and the block size 
is 8), the tree height is 2:

Choice of pivot affects the B-tree performance. 
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Cannot compare first byte of                       with      .
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Keys are Atomic
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Cannot compare first byte of                       with      .

Only the comparison function understands the keys. 

Keys are opaque. Need to send entire key to comparison 
function and store entire key in node. 
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Cannot compare first byte of                       with      .

Only the comparison function understands the keys. 

Keys are opaque. Need to send entire key to comparison 
function and store entire key in node. 
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Choice of Pivot Matters For Variable-Size Keys

Example: N keys with average size <2. 
• N/B keys with size B and N-N/B keys with size 1.

Size 1 keys as pivots: optimal.

23
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Example: N keys with average size <2. 
• N/B keys with size B and N-N/B keys with size 1.

Size B keys as pivots: O(log B) factor worse. 
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Desired Guarantee

Let K be the average key size. 

Goal: O(logB/KN) memory transfers per operation.
• Generalizes what happens if keys all have the same size K.
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Desired Guarantee

Let K be the average key size. 

Goal: O(logB/KN) memory transfers per operation.
• Generalizes what happens if keys all have the same size K.

Unfortunately, we cannot get this for worst-case 
searches, but we’ll get it in expectation.
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Why We Cannot Attain Good Worst-Case Bounds

Example: N keys with average size K<2. 
• N/B keys with size B and N-N/B keys with size 1.
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Why We Cannot Attain Good Worst-Case Bounds

Example: N keys with average size K<2. 
• N/B keys with size B and N-N/B keys with size 1.

•
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Why We Cannot Attain Good Worst-Case Bounds

Example: N keys with average size K<2. 
• N/B keys with size B and N-N/B keys with size 1.

•
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But we are ok on average: (1-1/B) logBN + (1/B) log2N=O(logBN).
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Why We Cannot Attain Good Worst-Case Bounds

Example: N keys with average size K<2. 
• N/B keys with size B and N-N/B keys with size 1.
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Related work: how to optimize B-tree height

• static (no inserts/deletes)
• DP-based
• (far from our target guarantee)

[Vaishnavi, Kriegel, Wood 80] [Gotleib 81] [Huang, Vishwanathan 90] [Becker 94]
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Static atomic-key B-tree (only searches)
• Expected leaf search cost:                      

 

• Linear construction cost for sorted data:                 

Some Results

32
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• Expected leaf search cost:                      

 

• Linear construction cost for sorted data:                 

Dynamic atomic-key B-tree
• Expected leaf search cost :  

 

• Cost to insert/delete/search for key L of random rank (amort): 
                                                 

• Cost to insert/delete/search for key of arbitrary rank: 
modification cost is dominated by search cost.

Some Results
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important

O(|L|/B) is cost to read L into memory

For streaming B-tree, should be much less than search cost.
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Atomic-Key B-tree Intuition

Greedy construction algorithm
• Greedily select pivot elements for the root node
• Proceed recursively on all subtrees of the root. 

Intuition
• Pick small keys in root to maximize fanout.
• Pick evenly distributed keys to reduce the search space.

To prove
• Root has a good structure.
• Recursive substructures achieve good performance, even 

though subtrees may have different average key sizes.

How fast can we insert?
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Root Construction

1. Divide keys into equal-size groups.

2. Pick (one of the) short keys in each group.

3. Store these keys in root

Satisfies constraints that keys are small and evenly 
distributed.

Enables inserts/deletes. 
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What can we tell you about what your hardware can do?

You cannot have 1 I/O/sec/GB (cheaply). 

You can insert data in any order at near disk bandwidth.

You can query data fast if the data is organized in the right 
order (e.g., has locality for that query). 

You must organize your system so queries have locality.
• E.g., find on a file system can be fast if the data is indexed correctly. 

You must use indexing to organize data for queries. 

Indexing is the currency that we can use to make queries 
go faster. 
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