The Server Push Architecture for
High End Computing

Xian-He Sun

Rajeev Thakur, William Gropp

I1linois Institute of Technology
Argonne National Laboratory

sun@iit.edu

THE PROBLEM: I/O BOTTLENECK

Poor Parallel 1/0

performance for complex
non-contiguous (small) access

Improving the performance
of large number of small I/0
requests 1s a necessity

Prefetching — fetch data
before a client demands for 1t

CPU Cycles

5000000
4500000
4000000
3500000
3000000
2500000+
2000000
1500000
1000000

500000

s*S/

&

5,000,000

1,666,666

451,807 , 960,000

1980 1985 1990 1995 2000

Year

@ SRAM Access Time B DRAM Access Time W Disk Seek Time |

Limitations of Existing

1.E+07

Prefetching Cdesos |
® 1.E+05 +—
Conservative and limited to SEoa i
. - g . = 1.E+03 |
static prediction strategies g byl I -
Only works for simple access " jru || I B
patterns with locality e
9"0 33'\ “Zj’k Q,G\ Qg"*
g & \r'sk \,\
& ~ o
" N X f

08/05/2008

lllinois Institute of Technology & Argonne National Laboratory

¥, A
OUR SOLUTION: FILE ACCESS SERVER .
(FAS)

A server pro-actively “pushes” required data in time
Push: data 1s sent before the client’s I/O request
In time: data arrives the destination within a window of time
Use of adaptive and advanced prediction algorithms
Selects I/0 access prediction algorithms adaptively
Prefetch Engine
What to prefetch
When to prefetch
Pushing data
Server 1ssues prefetch instructions
Pushes the data from disk to prefetch cache at client

Push Server: Parallel processing for prefetching

08/05/2008 lllinois Institute of Technology & Argonne National Laboratory

FAS ENABLED PARALLEL I/0

» File Access Server 1nitiates prefetching requests
» Collect hints to predict future I/0 needs
» Push data from disk to compute nodes

| it | | i et e e e | e e 1| e i’ et e i | i e 1| e e —_———— e — e — —

Data
>
Propeller

Prefetch queue :

e (e

I -] i g ||
| File Access Server 1/O Hints Pool : i Client i
" e TR T T A |
: _ Helper Thread | ! | Pre-execution : I
Runtime prefetch Requests | 1 I thread | I
I Prediction Strategy : I -:
i I
| Endine il I Post-execution | | - :
l Prefetch | Hints | | Process ;
| Predictor | l | _ |
| I
| } || /0 |
I Request I e REqUESt | I l’E'C{UE'St !
| prefetch Generator e Trace l I |
| requests Sutat | | i
I || !
| | |
| 1
| 1
! I

BIbp payoiafaid

(——
| I/0 Server :

!
|
: ----- > PVFS2 e Storage
!
|
i

08/05/2008

CURRENT IMPLEMENTATION PROGRESS

Client |

Request
prefetc h Generator
requests D

4
1
L
]
o] |
A4d

| Prefetch queue

D10p payats

08/05/2008 lllinois Institute of Technology & Argonne National Laboratory

PREFETCHING: Implementation
under MPI

Regular Parallel Applications

Iy

Programmer’s Intervention/Source-to-Source Pre-compiler

Prefetching Library

Enhanced
MPI-IO Library

A 4

Caching Library

1 L

Parallel File System/Network File System

MT: main thread (computation thread) > Request
PT: (pre-execution) prefetching thread == Data

A
Yearly Major Achievements: .

A better understanding of I/O data access.
Implemented prefetchings in MPI-IO ADIO layer.

Implementation of signature based prefetching

A hybrid of offline analysis and runtime adaptation for predicting
future I/0 accesses

Development of Signature Notation for I/O Workloads
(characterization & adaptation)

Publication in SC 2008
Implementation of pre-execution based prefetching

A pre-execution thread predicts future I/0 accesses and initiates
prefetching data

Publication in SC 2008 (best paper nomination)

Non-conventional approaches, many new research
1ssues

08/05/2008 lllinois Institute of Technology & Argonne National Laboratory

Xy
Post Analysis: 10 Signature-based
Prefetching

main thread prefetch thread
Generate 10 | |
signature (post _ -
. fileopen ... _._._._._.o._. > thread
analysis) ;

: v () init pfcache and
Prefetching thread = | gnatre b8
Initiates prefetch = |

% | Read and adjust . —
CaChe and I'eadS l 2 g pattern signature ______UODBg
signature, picks @ v
g . » P ° —— __—Stable pattern
prefetching scheme o “—__ signature?
. . ® /es
Ad]UStS Slgnature pl‘defetch > Sendp:efetch
. ata reques
based on running 1 I
pI‘OCGSS and file close Fr-s=s=-s----=o—-=-=> endthread
current pattern v v

information

Challenges

Identify, represent, and detect of I/O signatures

Characterize I/0 access

Patterns and Notation, Trace Signature, Pattern
Signature

Collecting runtime information to adjust signatures

PT initiates a prefetch cache, share I/0 read accesses info
of the main thread

Maintaining coherence when data 1s updated

Support for prefetching thread (PT) and prefetch
cache

Prefetching library to separate from I/O accesses

08/05/2008 lllinois Institute of Technology & Argonne National Laboratory

s¥s/ A
[/O Signature: Patterns and Notation 1 .

Comprehensive I/0 access pattern classification

g .)
/ Spatial Patterns \ OGP e
UContiguous O Small
UNon-contiguous O Fixed 0O Medium
»Fixed strided O Variabl O Large
»2d-strided __ /)
*Negative strided
sRandom strided 4)
ahd-strided Temporal Intervals
UCombination of contiguous OFixed
@d non-contiguous patterny ORandom
_ J
Repetition I/0 Operation
_ URead only
USingle occurrence QWrite only
ORepeating \ JRead/write v,

08/05/2008 lllinois Institute of Technology & Argonne National Laboratory

Trace Signature

Description of a sequence of
I/0 accesses in a pattern
Form: {I/O operation, init
position, dimension, ([{offset
pattern}, {request size
pattern), {pattern of number

of repetitions)], [...]), # of
repetitions}

Pattern Signature

provides a simple description

that explains the nature of a
pattern

Form: {I/0 operation,
<Spatial pattern,
Dimension>, <Repetitive
behavior>, <Request size>,
<Temporal Intervals>}

08/05/2008

Pattern Detection

Developed a pattern
detection tool

Five pattern detectors
for finding patterns
among 1nitial positions,
offsets, request sizes,
temporality, and
repetitions

Outputs I/O Signature
that can be used for
prefetching

lllinois Institute of Technology & Argonne National Laboratory

s*S/

ADJUSTING I/O SIGNATURES

MT comm. to PT via shared

variables

SVs include file handle, file
location, request size &
protected by a POSIX

mutex

PT verifies the signature
via SVs generated by the
MT (prefetch distance)

Confirmed: update file

location

Not: does not prefetch

08/05/2008

Read
Signature

2

Read _Shared
Variables

\%
sign_file_pos =
sign_file_pos +

pf_dist

V4

sign_stride ==

main_stride &&
sign_req_size

main_req_size

\l/no

sign_stride ==
main_stride &&
sign_req_size !=

main_req_size

\

sign_stride !=
main_stride-&&
sign_req_size

main_req_size

\l/ no
Disable
prefetch

<—

s*S/

Shared
variables

yes

gs Adjust S

sign_req_size

S Adjust

i i —>]
sign_stride
y
Slgn_fll Pes file_pos !=
sign file pos < sign_file_
pos

+ pf_dist

Issue prefetch
(file, sign_file_pos,
sign stride,
sign_req_size)

lllinois Institute of Technology & Argonne National Laboratory

CACHING LIBRARY SUPPORT

Collective caching

W.K. Liao et al., |
Northwestern client—_| _ Giobal cache
............ pglo|

local buffer cache

Global cache pool comprised
by cache buffer from all 5 N %
clients ' «—»(_ Interconnect network
Coordinate to manage cache ———— = ;Q[é]';iggv's}é'r;; """""""" —
data w/o involving I/O servers e |c:§s } N
D O
Avoid coherence problem by E %
keeping at most one copy s
Our CUStOmizatiOn Collective Caching

] from Northwestern Research Group
Enable read caching only

Direct caching policy with
prefetching result

08/05/2008 lllinois Institute of Technology & Argonne National Laboratory

PREFETCHING LIBRARY AND

s*S/

MAINTAINING COHERENCE

Split prefetch request
into page blocks

Already yes

cached?

o

Allocate buffer in
prefetch cache

v

Perform 1/0 read
with prefetch flag

v

Update metadata of
prefetch cache

!

[return]%

08/05/2008

Prefetching library verifies
if data 1s already cached

If not, disk read 1s 1ssued

Coherence 1s maintained by
invalidation

MPI-IO write operation is
modified

MPI-IO Write looks up
prefetch cache and
invalidates the page, if
found

lllinois Institute of Technology & Argonne National Laboratory

PERFORMANCE RESULTS

o NAS Parallel Benchmarks, MPI version, BTIO, Class B
o0 1-d strided reads
o On NFS, the I/0 read performance gain is 25%

o On PVFS, the I/O read performance gain is 8% with 4
processors, and 15% with 9 and 16 processors

20 B00
it A
v -
& E 4040
EE’D 7] E
i =
o
B10 - 3 200
= 5
T £
5 a0
Ne) 1:' i I I
4 g 16 4 g 16
B on MNFS M on NFS with Prefetching B on PVFS M onPVFS with Prefetching

Performance On NFS (left) and on PVFS (right)

08/05/2008 lllinois Institute of Technology & Argonne National Laboratory

PERFORMANCE
RESULTS

o PIO-Bench, 2-d nested
strided

o On average I/0 read

performance improves
27% on NFS

o On PVFS, the
performance gain on
average 1s around 18%

08/05/2008

100

80

e

60

40 -

MB/s
=]

256k, 768k

W Procs:2
B Procs: 4 with prefetching
® Procs:16

512k, 1.5M 1M, 3mM 2, 6M

4, 12M

W Procs: 4
® Procs: 8 with prefetching

W Procs: 2 with prefetching
mProcs: 8
= Procs: 16 with prefetching

Performance On NFS (above) and on PVFS (below)

1800

1600

1400
1200

1000
800
600 -
400
200 -

MB/s

256k, 768k

B Procs: 2

M Procs: dwith prefetching

B Procs: 16

512k, 1.5M 1M, 3M 2M, 6M

4M, 12M

B Procs: 2 with prefetching M Procs: 4
HProcs: 8 W Procs: 8 with prefetching

B Procs: 16 with prefetching

lllinois Institute of Technology & Argonne National Laboratory

Runtime: Pre-execution based 1/0
Prefetching

Idea

A pre-execution thread runs ahead and prefetch for
the main thread
Challenges
Guarantee expected program behaviors
Effective pre-execution (kept running ahead)

Coordination between main and the pre-execution
thread

Compiler support (automatic)
System support (Caching library, Prefetching library)

08/05/2008 lllinois Institute of Technology & Argonne National Laboratory

Solution

Pre-execution thread
Code cloning
Code slicing: Non-I0 related code is sliced away

Prefetch calls replace normal calls
o Avoids the copy to user buffer
o Could be non-blocking

Thread-safety

Prefetch thread never commit writes
A separate prefetch file pointer into the opaque file handle

Coordination and coherence
Delayed synchronization

Prefetch conversion

Convert reads/writes/seeks to prefetch counterparts
Convert open/close/sync/deletion to sync points

08/05/2008 lllinois Institute of Technology & Argonne National Laboratory

s*S/

Code slicing

Analyzer

Linker

Linked
IF code

Slicer

Unravel structure

Slice
criteria

Pre-compD

2 \
@ » Analyzer Slicer
code
W v
. Slice

Linker Merger

Prefetch
\ conversiory

Prototype pre-compiler

08/05/2008

Optimized
code

Runtime
library support

Automate construction:
program slicing
Pre-execution thread is a
subset of original program
Tool: Unravel
o Analyzer, linker, slicer
Prototype pre-compiler
o Slice criteria: I/O statements

o Slice merger: OR bitmask of
corresponding code lines

o Prefetch conversion

lllinois Institute of Technology & Argonne National Laboratory

s*S/

SLICING ALGORITHM FOR PRE-
EXECUTION

Scnv> if ve defs(n)

S<m,v>—<{n}U[U S<n,x>}U{ U U S<k,y>} otherwise

xerefs(n) verefs(k)kereq(n)

<m, v>: slice criterion; m: statement, v: variable
n: all predecessor statements of m

If n does not assign v, recursively evaluate S<n,v>

Otherwise
Include n
Include the slice on all referenced variables x in n

Include the slice on all referenced variables y in all statements
k that control statement n

Coherence/Effectiveness M P
---------------=..§---V-Vdesired sync
o
Consistence L,
Synchronize on write 1
Delayed synchronization I
Detect dependency at runtime .
Record write byte ranges, dirty WO{ delayed sync
range, then continue } r
Perform the delayed 1
synchronization when conflict r
occurs i 1
Dirty range 1s combined/split as 0

writes/reads/syns go on

Dependency analysis table file view

Preserves MPI-10 [Dirty range

consistency for parallel I/O El Range canbe
Locking 1s performed for PT

08/05/2008 lllinois Institute of Technology & Argonne National Laboratory

PBENCH RESULT: TIME REDUCTION

Time reduction: up to 37.9%
Average: 29.8%, 33.2%, 26.5% 1in three cases

B0 TTIT? Reduction from Pre-execution Prefetching PBench test cases
A [Execution time with pre-execution prefetching
2e8 1 - Execution time reduction from the original 4KX4K, 128MB
sof -l E— .
| | | | | 8Kx8K, 512MB
w & - 16Kx16K, 2GB
S ol i . I ,,,,, R S L
8 ; | | | | PVEFS result:
£ | | | | | . .
SR ii S N o o o Time reduction: up to 39.5%
} } } } } Average: 28.1%, 28.4%, 30.2% in three cases
10+ 7%%\%% -1 - - - H -1 H ***** Time Reduction from Pre execution Prefetching
w w w 1BKx16K § T7—mree
| | —> (I Executlon time with pre-execution prefetching
0 H Hﬂ ﬁm = H = H 268 ‘ _| I Execution time reduction from the orlglnal
1 2 4 8 16 ! ! !
Number of Processes i i i i
PBench ResultonNFS | % I N RN
NFS result: |

[I

2 4 8 16

PBench Result on PVFS
08/05/2008 I1linois Institute of Technology & Argonne National Laboratory

Bandwidth(MB/s)

TILE 2D-CONVOLUTION RESULT:
SUSTAINED BANDWIDTH

Tile 2D-convolution

5x5 titles, with 100x100 and 200x200 elements
respectively, with size 1KB and 2KB respectively

10x10 titles, with 50x50 and 100x100 elements
respectively, with size 1KB and 2KB respectively

Data size: 256MB, 512MB, 1GB, 2GB

Two 5 by 5 Tiles 2D-convolution

300

250

200

150

100

50

Two 5 by 5 tiles on PVFS

Two 5 by 5 tiles result:
- Bandwidth improvement: up to 20.6%
- Average: 18.4%

08/05/2008

Bandwidth(MB/s)

300

250

200

150

100

50

Two 10 by 10 tiles result:
- Bandwidth improvement: up to 20.3%
- Average: 14.7%

Two 10 by 10 Tiles 2D-convolution

s*S/

v

[Original

I Pre-execution Prefetching

50x50, 1K

50x50, 2K

1
100x100, 1K 100x100, 2K

Two 10 by 10 tiles on PVFS

I1linois Institute of Technology & Argonne National Laboratory

CONCLUSIONS

Current Progress (New I/O architecture)
Understanding parallel I/O workloads

» Introduction of new signature to represent I/0O workloads

New approaches for improving parallel I/O performance
» Prefetching with the use of I/O signature
» Prefetching by using pre-execution of I/0 accesses

Research and development

Need to do

Implementing prefetching strategy in PVFS2
» Parallel data access pattern, scheduling, PVFS

Improvement

» Better prefetching algorithms, code slicing,
analysis of coherence

Integrated approach

08/05/2008 lllinois Institute of Technology & Argonne National Laboratory

