
Object Caching for MPI-IO

Phillip M. Dickens and Jeremy Logan
Department of Computer Science

University of Maine

Project Overview

A fundamental challenge in providing scalable,
parallel I/O is that data-intensive applications, do
not, in general, access their data in a manner
consistent with how data is stored on disk.

Access patterns often lead to a large number of
small I/O requests.
Well-known problem, techniques such as two-
phase I/O, data sieving, DataType I/O have been
developed significantly improving I/O
performance.

Problem is not with I/O access patterns, but rather
with the legacy view of a file as a linear sequence
of bytes (block-based file).

Applications do not access their data consistent with this
file data model.

More accurately described as an object model.
Each object represents a file region in which the process
operates.
File data is viewed as a collection of (perhaps) non-
contiguous objects.

Object file: File that stores data as a contiguous set
of objects rather than as a linear sequence of bytes.

More powerful file model because it “encodes” the
access patters of the application.

Ignoring contention (for the moment), if a
process has all of its objects stored locally, and
objects are stored contiguously on disk then:

Process can move its data to and from the file system
in a single I/O operation.

Merging the power and flexibility of the parallel
I/O interface (and implementations) with a more
powerful object file model.
However, MPI does not operate in terms of objects,
so we are developing an object caching system to
provide an interface between MPI applications and
object files.

Completely transparent to the application.

Objects

Objects are based on MPI file views:
Maps relationship between regions of a file that a process
will access and the way regions laid out on disk.
Process cannot “see” or access any regions outside of file
view
Logically maps a contiguous view window onto the
(perhaps) non-contiguous file regions in which the process
will operate.

File

View
Window

Store the contiguous “objects”

on the process that will
use them.

Figure shows file access patterns of two
processes.

0 1 2 3 4 5

0 2 4

Object Creation

Intersections of MPI file views.
Object created for each intersection.

Objects created in this way encode all known
information about processes access patterns.
Identifies all file regions within which conflicting
accesses are possible (shared objects) and all
regions for which there can be no contention
(private objects).
This information can be utilized by runtime system
to significantly enhance performance.

Cache Runtime System

All processes that share a file participate in the
object cache for that file.

Utilize process memory and any local disk space.
Local object manager for each participating
process.
Once objects are created, distributed among local
managers based on a cost model of assigning a
given object to a given manager.
Local manager controls meta-data and locking for
all objects it controls.

Once objects are created all subsequent I/O
operations are performed in the cache (except in
the case of sync() or close() operation).

P0 P1

b

c

d

Object Manager for
P0

0 2
Object Manager for
P1

1 3

0 1 2 3 0 1 2 3

Once created, can determine reverse access set
which is list of all processes that have access to one
of their objects.
Distinction between shared and private objects has
two important ramifications:

Only shared objects must be locked, and represents the
minimum (known) overlap of shared file region.

Provides maximum possible concurrency for data access.
Simplify and increase performance of locking system

Essentially, each object manager acts as a
centralized lock manager for those processes.

Contention for write locks is limited to subset of processes
that can access objects.

Rather than a complex distributed lock manager
(for the entire file), have a distributed set of
centralized lock managers operating in parallel.

Application Layer

Local Object Manager

Obj1 Obj2 Obj3

Request for
(shared) Object 2.

Dynamic Translation Between File Data
Models

Object Files

Objects can be written to disk as either a block-
based file or an object file.
If written as an object file, meta-data needed to
translate between file models.
If written as block-based object managers perform
operation similar to two-phase I/O to put objects
back into linear sequence of bytes.
Advantage: Each process can write all of its objects
to disk in parallel.

File
Metadata

P0 P1 P2 Pn

Object
Metadata

O0 O1 Ok

Integration with MPI

Have integrated prototype caching system in
MPICH2 developed at Argonne National
Laboratory.
Whole concept of object files can be completely
transparent to the application.
Object files are treated as simply another file
system.

ADIO driver for object files.

ROMIO

ADIO

POSIX PVFS GPFS LustreOFS

Object Cache

Experimental Evaluation
Preliminary performance results using FLASH I/O benchmark.
Simulated the I/O because we are not yet able to interface with
HDF-5 or parallel NetCDF (work in progress).

Used the same access patterns and created same size file.

Experiments performed on Ranch (TACC) on Lustre file system
(Scratch) with 50 OSSs and 300 OSTs.

Compared our simulated approach using the object cache, and
version of FLASH from ANL uses HDF5.
Compared using both object files and block-based files.

Issues

Benefits obtained from this approach are a
function of the quality of the file views provided by
application.
In the best case many advantages to this approach.

Simplified locking
Locality of cache objects to processes
Can buffer multiple
Contention for locks is reduced
Fewer file system accesses
Buffering can span multiple I/O calls.

Issues

In the “worst” case revert to a standard block-
based caching system.
Looking for other means of exposing file access
patterns.

Currently investigating use of XML files.
Other possibilities include

Graphical tool to input object structure.
Object learning.
Develop information on user’s behalf.

If application frequently changes file views then:
Try to convince them to change their approach.
Do not use object cache.

Conclusions

Developing new model for file data based on
objects.

Encode all known file access patterns.
Natural mechanism to capture information about
shared/private regions of a file.
Can be used by runtime system to simplify and increase
performance of the locking system (under construction).
Provides maximum concurrency possible based on current
knowledge.
Can write object files in a single I/O operation in parallel.

Conclusions (continued)

We have integrated prototype caching system with
MPICH2.
Saving data as object files can significantly
improve performance.
Looking forward to experimenting with MPI
Atomic mode.
Investigate performance with very large number of
small, unaligned objects.

Bread and butter of the object caching system.

Thank you!

Questions?

Understanding the Performance of MPI-IO
in Lustre File System Environment

Important problem, reason for which is not well
understood.
We believe the fundamental problem is that
assumptions underpinning most important parallel
I/O optimizations do not hold in a Lustre
environment.
Most widely held assumption is that parallel I/O
performance is maximized when aggregator
processes perform large, contiguous I/O operations.

Problem is that this can easily cause an all-to-all
communication pattern that creates contention at
the network layer, the locking layer, OSS (OST)
level.
In many cases, the overhead of such contention
completely dominates performance advantage of
performing fewer I/O operations.

Object caching
system

Object Files with Excellent
performance

Block-based files with
very poor performance

on Lustre

Investigate poor performance.

Implement new algorithms more
aligned with Lustre’s storage model

Hypothesis:
Performance dominated by cost of communication pattern.

Experiment:
Control number of OSTs (or OSSs) with which aggregator
processes communicate.
Can do this by controlling the block size for which each
process is responsible.
Tradeoff: Decreasing number of OSTs with which process
communicates increases the number of separate I/O
requests.

Identify different approaches by number of OSTs
with which aggregator processes communicate.
Executed on large Lustre file system on Ranger.

50 OSSs and 300 OSTs.
Writing 50 Gigabyte file.
Varied number of OSTs and number of aggregator
processes.
Compared with native MPI-IO implementation.

	Object Caching for MPI-IO
	Project Overview
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Objects
	Slide Number 7
	Object Creation
	Cache Runtime System
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Dynamic Translation Between File Data Models
	Object Files
	Slide Number 16
	Integration with MPI
	Slide Number 18
	Experimental Evaluation
	Slide Number 20
	Issues
	Issues
	Slide Number 23
	Conclusions
	Conclusions (continued)
	Slide Number 26
	Understanding the Performance of MPI-IO in Lustre File System Environment
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35

