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Combustion and energy security

Combustion accounts for 3/4 of energy used in U.S. 
manufacturing
Ground transportation accounts for 2/3 of petroleum 
usage

Potential for improvement in thermal efficiency 
(30%→45%)

Low temperature combustion (LTC) concepts for 
automobiles
Savings of 3 million barrels of oil per day (out of 
20M)

Design improvements are difficult
Low hanging fruits have already been picked
Advanced concepts require combustion operating 
at the edge

Sound scientific understanding is necessary

ACK: Dr. Jackie Chen from Sandia National Labs



Combustion Application using DNS: Extinction 
and reignition in a CO/H2 jet flame

Understanding extinction/reignition in 
non-premixed combustion is key to 
flame stability and emission control 
in aircraft and power producing 
gas-turbines

Discovered dominant reignition mode is due to 
engulfment of product gases, not flame 
propagation

Scalar dissipation rate 

Burning Extinguished

The largest ever simulations of combustion
have been performed to advance this goal:

− 500 million grid points
− 11 species and 21 reactions
− 16 DOF per grid point
− 512 Cray X1E processors
− 30 TB raw data
− 2.5M hours on IBM SP NERSC (INCITE);   

400K hours on Cray X1E (ORNL)

Hawkes, Sankaran, Sutherland, Chen – 2006, DOE INCITE 2005, early user LCF /ORNL 20



S3D parallel performance

•S3D scales with 90% parallel efficiency on 10000 cores on CrayXT3 (ORNL)



Typical Software Layers for I/O in HEC
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Client Process Collaboration
Proved to be scalable for parallel I/O

Well-known example: 2-phase I/O adopted in ROMIO

Relying on I/O servers is not scalable
Number of servers is much less than clients
Servers use file locking to maintain file consistency

Locking is not scalable, should be avoided if possible

Servers do not tell if requests from one client are related to 
another

Clients collaboration on I/O
Reduce communication link contention on servers
Faster communication among clients
Resolve access conflicts within the group of clients
Rearrange I/O for best underlying file system performance
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MPI-IO Client-side File Caching
• Goals

– A fully functional, application-aware caching layer in MPI
– Inter-process collaboration for coherence control, file system lock 

boundary alignment
– Reduce I/O servers’ workload

• Design
– Global cache metadata management

• Metadata of file blocks are statically distributed in round robin
• A distributed lock management for keeping metadata integrity

– Local cache page management
• Page eviction, migration

– I/O thread
• Enable remote cache data access at the background
• Enable overlapping of computation and I/O
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I/O Thread
• One thread per MPI process

– Created at the first file open
– Destroyed at the last file close

• Handle local requests
– Keep watching a local mutex 

protected shared variable
– Process all I/O related requests, 

leaving the main thread alone
• Handle remote requests

– MPI_Iprobe( ) is used to probe 
remote requests

• I/O
– Makes read/write calls to the file 

system
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Design:  An Example

page 3
page 2
page 1

1P 2P 3P0P
Cache pages at compute nodes

local memorylocal memory local memorylocal memory

page 3
page 2
page 1

page 3
page 2
page 1

page 3
page 2
page 1
page 2

Al
re

ad
y c

ac
he

d b
y P

2

Logical partitioning view of a file
block 4block 3block 2block 1block 0 block 3

m
et

ad
at

a 
lo

ok
up

Distributed metadata
P0

block 8 status
block 4 status
block 0 status

block 9 status
block 5 status
block 1 status

P1

block 10 status
block 6 status
block 2 status

P2

block 11 status
block 7 status
block 3 status

P3

If n
ot 

ye
t c

ac
he

d
File system

page 4

Metadata
communication

Cache data
communication

System call



10

Experiment Setup
• Machines

– Tungsten, a Linux cluster @ NCSA running Lustre
• Use 16 I/O nodes, 512 KB stripe size

– Mercury, an IBM cluster @ NCSA running GPFS 
• Use default 54 I/O nodes, 512 KB stripe size

• Our implementation is placed in the ADIO layer 
of MPICH2-1.0.5

Contact Prof. Wei-Keng Liao for questions 
wkliao@ece.northwestern.edu
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S3D I/O
• S3D -- A parallel turbulent combustion application 

developed at Sandia National Laboratories

S3D I/O on GPFS
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BTIO
• Block tri-diagonal array partitioning pattern
• Run on Lustre at NCSA’s Tungsten
• Run on GPFS at NCSA’s TeraGrid machine

BTIO 162x162x162 on GPFS
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FLASH - I/O
• I/O kernel of the FLASH 

application, a block-structured 
code developed for the study of 
nuclear flashes on neutron stars 
and white dwarfs

• I/O method: HDF5
• Each process writes 80 arrays

– Aggregate I/O amount increases as 
the number of MPI processes

• I/O pattern
– Non-interleaved writes among 

processes

FLASH I/O on GPFS
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Two-stage Write Behind
• A Large Number of application I/O patterns are:

– Write-only
– Non-overlapping (in byte range)

• Two-stage method
– Locally in each process

• Enable write-behind (1st-stage buffering)

– Globally among all processes
• Avoid file system lock conflict (2nd-stage buffering) 

– Requirements
• File is opened in write-only mode
• MPI atomic mode must be disabled (default mode in MPI)
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FLASH I/O and S3D I/O

FLASH I/O on GPFS
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S3D-IO: Performance + Productivity
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BTIO
• Native MPI independent write

– Not shown: bandwidth < 5 MB/sec, due 
to huge number of requests

• Independent writes with two-stage 
write-behind
– Dare to compare with MPI collective 

write
– Collective I/O is known to outperform 

independent I/O significantly

write amount per request per processWAPRPP: 
number of write requests per processNWRPP: 

405 B1050001.27 MB40100

Number of write requests per MPI process

810 B1312402.53 MB4064
1080 B1749604.51 MB4036
1620 B26244010.14 MB4016

WAPRPPNWRPPWAPRPPNWRPP
Independent WritesCollective WritesNumber of 

processes
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S3D-IO on Cray XT3/4 
(Performance/Productivity)

• No of files increases linearly with No of 
processors

• Managing 10s of thousands of files is a 
SDM and productivity nightmare

• Our initial results our encouraging for 
scalability, performance and productivity

• Some system software needs to be fixed 
for us to experiment on larger systems
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Execution time for 10 checkpoints
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Accomplishments
• Thread-based collaborative caching

– RMA based alternative is under development/testing
• Faculty/students funded

– 2/2  (for 2 out of three years, 1 student funded for 1 year)
• Collaborators

– Rob Ross, Rob Latham, Rajeev Thakur @ANL
– Ramanan Sankaran, Scott Klasky @ORNL
– Lee Ward, Jackie Chen@SNL
– IIT (HECURA project) provided with caching software for server-

push I/O
• Issues/needs: Most important: Access to larger machines 

and getting the vendors to fix software when requested, 
incorporation of our S/W in production S/W etc.
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Publications
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• Wei-keng Liao, Kenin Coloma, Alok Choudhary, and Lee Ward.   Cooperative 

Client-side File Caching for MPI Applications.  In the International Journal of 
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• Wei-keng Liao, Avery Ching, Kenin Coloma, Arifa Nisar, Alok Choudhary, 
Jacqueline Chen, Ramanan Sankaran, and Scott Klanksy. Using MPI file caching 
to improve parallel write performance for large-scale scientific applications. In 
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