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Problem: Large-scale Data Movement to/from MPP 
• GTC (ORNL/Jaguar) requirements:

512x1 or 1024x1: compute cores -> I/O nodes, TBs/hour, 120 hours
aggregrate B/W: 1 GB/sec (limited by `portals’ capabilities)
multiple, simultaneous data feeds: e.g., diagnostics, analysis, restart
controlled data drain to limit perturbation

• Chimera: 35,000 cores, 550kb/core/sec => ~18 GB/sec
or: TBs/hour, for 6 days (!)

• Conclusions: 
! synch. file writes -> store -> analyze/visualize will not scale !

! need asynch. operation + `in transit’ data processing !

Initial
Project
Focus



Solution: Structured Data StreamsSolution: Structured Data Streams

Future high end applications moving Terabytes/output cycle 
make it necessary to manipulate data ‘in transit’.

`Structured data streams’ is a new approach to I/O, performing 
runtime data annotation to enable efficient data 

manipulation, synchronously and asynchronously with data 
movement.

Technical Elements

• Data tap: asynchronous structured data capture, uniform API
• I/O graph: graph-based, scheduled data buffering, forwarding,

and synch. or asynch. data manipulation
• LWFS: light-weight file system, backend object store
• Metabots: asynchronous data and metadata processing
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Structured Streams: Architecture and 
Implementation
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Datatap API

Cray PortalsIB-uverbs TCP/IP

EVPath Overlay PBIO Data Format

Data tap Services

EVPath Data Transport

I/O graph Services



Data Extraction with Data taps

Two implementations, both asynch.:

• Infiniband u-verbs on Linux cluster

• Portals on Cray XT3/XT4: 

• 1024 processor run on Jaguar

• optimizations to reduce overhead on

data tap server

Measured performance:
• Performance similar for both
implementations

• Portals have better 
asynchronous behavior

• IB implementation needs 
more optimization for very 
large number of nodes

• encouraging server-side 
results on sustained throughput:

Processors Average Bandwidth 
(MB/s)

Request Completion 
Latency (s)

1024 1010 0.624
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Asynchronous Data tap

• Application returns to computing faster

• I/O nodes spend less time in idle mode

• Overhead of data output reduced compared 
to default file implementations (next slide)

Output Method 500k Ions 1000k ions

GTC/No Output 213.00 s 422.33 s

GTC/Data tap 219.65 s 434.53 s

Time for a short GTC run (100 timesteps) 
using datatap as the output method
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Data tap vs. Synch. File Operations

• Compute processes block until write is 
completed

• Blocking time is dependent on the total 
bandwidth to disk

• I/O nodes spend significant time in idle mode

• Application overhead can be significant
Output Method 500k Ions 1000k ions

GTC/No Output 213.00 s 422.33 s

GTC/Lustre 231.86 s 460.90 s

Time for a short GTC run (100 timesteps) 
using file I/O as the output method



Out-of-band Metadata
with Metabots & LWFS

Directory reconstruction using 
metabots LWFS lightweight I/O performance

• Creating directory 
information separately is more 
scalable
• Preserves in-band data 
performance

• LWFS object creation can
outperform common parallel file 
I/O (Lustre)
• Centralized Lustre metadata 
operations cause bottleneck



• Cray XT3/XT4 Catamount/Portal and i86-Cluster Linux/IB 
implementations: initial prototypes and measurements complete
– Cray portal and IB realizations
– also runs on PowerPC-based machines

• Representative I/O graphs: diagnostics, analysis, restart:
– current focus on synch. vs. asynch. data annotation/manipulation
– operator generation not yet automated

• Data storage with LWFS or Lustre (for comparison)
– integrated LWFS (UNM/Sandia) and GT software

• Representative Metabots
– separating creation of directory structures from data I/O; data 

transformations

• Evaluation with representative petascale code (GTC) on 
leadership class machine (ORNL – Jaguar)

Project Status



Ongoing/Future Work

• Data tap: 
– uniform API for MPI-IO, Lustre, HDF-5 I/O
– flexibility in data encoding through runtime code generation (compute-

vs. I/O node-side)
• I/O graphs: 

– scheduled data movement and differentiated services for diverse data 
streams

– automated graph creation/operator generation
• Metabots:

– metabot API and control framework - location and (co-)scheduling
– specification language for metabot activity (integrated with data 

specifications for I/O graphs)
• LWFS: 

– extensions including legacy filesystem compatibility, transactional 
semantics, performance optimizations

• Associated CPA/industry projects: I/O and Platform 
Virtualization



Data tap: Completion Latency

Portals: observed request completion latency



Data tap: Bandwidth

Portals: observed average bandwidth at the server


