
Structured Data Streams:
Peta-scale I/O and Storage

Collaborative Research
CERCS Research Center

College of Computing
Georgia Institute of Technology

Computer Science Department
University of New Mexico

Karsten Schwan
Arthur Maccabe
Patrick Bridges

Greg Eisenhauer
Patrick Widener

Matt Wolf
and

(Ron A. Oldfield, Sandia National Laboratories)
(Scott Klasky, Oak Ridge National Laboratories)



Problem: Large-scale Data Movement to/from MPP 
• GTC (ORNL/Jaguar) requirements:

512x1 or 1024x1: compute cores -> I/O nodes, TBs/hour, 120 hours
aggregrate B/W: 1 GB/sec (limited by `portals’ capabilities)
multiple, simultaneous data feeds: e.g., diagnostics, analysis, restart
controlled data drain to limit perturbation

• Chimera: 35,000 cores, 550kb/core/sec => ~18 GB/sec
or: TBs/hour, for 6 days (!)

• Conclusions: 
! synch. file writes -> store -> analyze/visualize will not scale !

! need asynch. operation + `in transit’ data processing !

Initial
Project
Focus



Solution: Structured Data StreamsSolution: Structured Data Streams

Future high end applications moving Terabytes/output cycle 
make it necessary to manipulate data ‘in transit’.

`Structured data streams’ is a new approach to I/O, performing 
runtime data annotation to enable efficient data 

manipulation, synchronously and asynchronously with data 
movement.

Technical Elements

• Data tap: asynchronous structured data capture, uniform API
• I/O graph: graph-based, scheduled data buffering, forwarding,

and synch. or asynch. data manipulation
• LWFS: light-weight file system, backend object store
• Metabots: asynchronous data and metadata processing



Data tapI/O graph

Metabots
LWFS



Structured Streams: Architecture and 
Implementation

O
nline M

anagem
ent

Datatap API

Cray PortalsIB-uverbs TCP/IP

EVPath Overlay PBIO Data Format

Data tap Services

EVPath Data Transport

I/O graph Services



Data Extraction with Data taps

Two implementations, both asynch.:

• Infiniband u-verbs on Linux cluster

• Portals on Cray XT3/XT4: 

• 1024 processor run on Jaguar

• optimizations to reduce overhead on

data tap server

Measured performance:
• Performance similar for both
implementations

• Portals have better 
asynchronous behavior

• IB implementation needs 
more optimization for very 
large number of nodes

• encouraging server-side 
results on sustained throughput:

Processors Average Bandwidth 
(MB/s)

Request Completion 
Latency (s)

1024 1010 0.624



Read restart 
data
Stream data

GTC

Data tap

I/Ograph I/Ograph processing

Send output 
request

computation

idle Read data Read data

Stream data

idle I/Ograph processing

computationCompute 

Node

I/O 

Node

48 GB/s

Auxiliary 

Cluster

5 GB/s

Asynchronous Data tap

• Application returns to computing faster

• I/O nodes spend less time in idle mode

• Overhead of data output reduced compared 
to default file implementations (next slide)

Output Method 500k Ions 1000k ions

GTC/No Output 213.00 s 422.33 s

GTC/Data tap 219.65 s 434.53 s

Time for a short GTC run (100 timesteps) 
using datatap as the output method



GTC

Lustre

computation

idle

output data

write data

to disk

computation

idle

output data

write data

to disk
idle

Compute 

Node

I/O 

Node

48 GB/s

Data tap vs. Synch. File Operations

• Compute processes block until write is 
completed

• Blocking time is dependent on the total 
bandwidth to disk

• I/O nodes spend significant time in idle mode

• Application overhead can be significant
Output Method 500k Ions 1000k ions

GTC/No Output 213.00 s 422.33 s

GTC/Lustre 231.86 s 460.90 s

Time for a short GTC run (100 timesteps) 
using file I/O as the output method



Out-of-band Metadata
with Metabots & LWFS

Directory reconstruction using 
metabots LWFS lightweight I/O performance

• Creating directory 
information separately is more 
scalable
• Preserves in-band data 
performance

• LWFS object creation can
outperform common parallel file 
I/O (Lustre)
• Centralized Lustre metadata 
operations cause bottleneck



• Cray XT3/XT4 Catamount/Portal and i86-Cluster Linux/IB 
implementations: initial prototypes and measurements complete
– Cray portal and IB realizations
– also runs on PowerPC-based machines

• Representative I/O graphs: diagnostics, analysis, restart:
– current focus on synch. vs. asynch. data annotation/manipulation
– operator generation not yet automated

• Data storage with LWFS or Lustre (for comparison)
– integrated LWFS (UNM/Sandia) and GT software

• Representative Metabots
– separating creation of directory structures from data I/O; data 

transformations

• Evaluation with representative petascale code (GTC) on 
leadership class machine (ORNL – Jaguar)

Project Status



Ongoing/Future Work

• Data tap: 
– uniform API for MPI-IO, Lustre, HDF-5 I/O
– flexibility in data encoding through runtime code generation (compute-

vs. I/O node-side)
• I/O graphs: 

– scheduled data movement and differentiated services for diverse data 
streams

– automated graph creation/operator generation
• Metabots:

– metabot API and control framework - location and (co-)scheduling
– specification language for metabot activity (integrated with data 

specifications for I/O graphs)
• LWFS: 

– extensions including legacy filesystem compatibility, transactional 
semantics, performance optimizations

• Associated CPA/industry projects: I/O and Platform 
Virtualization



Data tap: Completion Latency

Portals: observed request completion latency



Data tap: Bandwidth

Portals: observed average bandwidth at the server


