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Abstract: A key aspect of science-based predictive modeling is the assessment of 
prediction credibility. This publication argues that the credibility of a family of models 
and their predictions must combine three components: 1) the fidelity of predictions to 
test data; 2) the robustness of predictions to variability, uncertainty, and lack-of-
knowledge; and 3) the prediction accuracy of models in cases where measurements 
are not available [1]. Unfortunately, these three objectives are antagonistic. A recently 
published Theorem that demonstrates the irrevocable trade-offs between fidelity-to-
data, robustness-to-uncertainty, and confidence in prediction is summarized. High-
fidelity models cannot be made increasingly robust to uncertainty and lack-of-
knowledge. Similarly, robustness-to-uncertainty can only be improved at the cost of 
reducing the confidence in prediction. The concept of confidence in prediction relies 
on a metric for total uncertainty, capable of aggregating different representations of 
uncertainty (probabilistic or not). The discussion is illustrated with an engineering 
application where a family of models is developed to predict the acceleration levels 
obtained when impacts of varying levels propagate through layers of crushable hyper-
foam material of varying thicknesses. Convex modeling is invoked to represent a 
severe lack-of-knowledge about the constitutive material behavior. The analysis 
produces intervals of performance metrics from which the total uncertainty and 
confidence levels are estimated. Finally, performance, robustness and confidence are 
extrapolated throughout the validation domain to assess the predictive power of the 
family of models away from tested configurations. 

Keywords: Confidence, prediction, validation, fidelity-to-data, robustness, uncertainty. 

1. Introduction 
In computational physics and engineering, numerical models are developed to predict the 

behavior of a system whose response cannot be measured experimentally. A key aspect of 
science-based predictive modeling is to assess the credibility of predictions. Credibility, which 
is demonstrated through the activities of model Verification and Validation (V&V), quantifies the 
extent to which simulations can be analyzed with confidence to represent the phenomenon of 
interest with a degree of accuracy consistent with the intended use of the model [2]. 

The paper argues that assessing the credibility of a mathematical or numerical model must 
combine three components: 1) Improving the fidelity of predictions to test data; 2) Studying the 
robustness of predictions to variability, uncertainty, and lack-of-knowledge; and 3) Establishing 
the degree of confidence in model predictions in situations where test measurements are not 
available. A Theorem has recently been established that demonstrates the irrevocable trade-off 
between fidelity-to-data, robustness-to-uncertainty, and confidence in prediction [3, 4, 5]. 
                                                           
1 Technical staff member and ESA-WR Validation Methods team leader. Mailing address: Los Alamos 
National Laboratory, ESA-WR, Mail Stop T001, Los Alamos, New Mexico 87545, U.S.A. Phone: (+1) 505-
663-5204. Fax: (+1) 505-663-5225. E-mail: hemez@lanl.gov. This publication is a revised version of 
Reference [1]. Approved for unlimited, public release on Nov-18-2003, LA-UR-04-6829, Unclassified. 
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Clearly, fidelity-to-data matters because no analyst will trust models and simulations that do 
not reproduce measurements collected during past experiments. Fidelity-to-data has dominated 
the concept of prediction accuracy in most scientific activities. This paradigm has resulted in the 
development of calibration techniques to improve the ability of models to reproduce test data. 
An example in Structural Dynamics is finite element model updating [6, 7]. The calibration 
paradigm, however, does not address V&V and the fundamental question of prediction accuracy 
especially when physical experiments are not available. It is therefore argued that calibration 
such as finite element model updating is useful but insufficient to reach simulation credibility. 

The problem of assessing the prediction accuracy of numerical simulations can be thought 
of as decision-making under uncertainty where a “best” solution is sought in a family of models. 
Here, uncertainty should be taken as a broad concept that includes environmental variability; 
lack-of-knowledge of material behavior, initial conditions, boundary conditions, and loadings; 
modeling assumptions; model parameter variability; ambiguous or conflicting expert opinion. 
Likewise, a family of models includes all models consistent with the sources of uncertainty.2 
The discussion of model validation proposed in this publication emanates from the perspective 
of making decisions in the context of uncertainty, where the decision is a statement about the 
prediction accuracy of a family of models, possibly for conditions that have not been tested 
experimentally, and uncertainty generally arises from competing modeling assumptions. 

Model calibration belongs to the class of decision-making strategies that advocate choosing 
decisions that optimize target performance metrics.3 Another strategy is to choose decisions 
that optimize the robustness to uncertainty and lack-of-knowledge [8, 9]. This strategy consists 
in satisficing performance, or ensuring that models reproduce the available test data with a 
level of accuracy that is just good enough. Clearly, the difference with the optimal performance 
approach is to seek sufficiency, not performance optimality. This frees a degree of freedom in 
the search for the “most valid” model. Robustness-to-uncertainty can then be optimized. The 
robust-optimal model not only reproduces the test data up to a given level of accuracy, but it 
guarantees that the prediction accuracy will be least vulnerable to the uncertainty considered in 
the analysis. Reference [9] proves the antagonism between performance optimality and 
robustness optimality, and the two concepts are further discussed and illustrated in Section 2. 

The third class of decision-making strategies that can be adapted to model validation is the 
assessment of prediction accuracy based on nominal predictions to which safety factors are 
added relative to confidence and uncertainty levels. References [10, 11, 12] provide examples 
in the context of the accreditation and certification of complex engineered systems. This 
approach is not further discussed because the definition of safety factors is application-specific 
to a great extent, although recent attempts have been made at interpreting margins and safety 
factors in terms of probabilistic reliability [13]. 

Figure 1 illustrates the application of three broad classes of decision-making strategies, 
namely, reliability analysis, robustness analysis, and margin analysis, to the problem of model 
validation. Reliability consists of optimizing performance metrics given a probabilistic, convex, or 
other, description of uncertainty. In terms of model validation, this leads to the concept of 
                                                           
2 For example, if a coefficient of an ordinary differential equation is unknown, the corresponding family of 
models would be the sequence of equations obtained as the coefficient is varied. A family of models may 
also include competing models based on different modeling assumptions, spatial resolutions, temporal 
discretizations, variational principles, etc 
3 In the case of finite element model updating, for example, “decision” refers to the choice of model 
parameters and “performance” refers to the ability of predictions to match measurements. The optimal 
decision optimizes performance, meaning that the “best” model parameters are those that lead to finite 
element predictions that best reproduce the test data. 
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calibration previously discussed where the correlation between simulated and measured results 
is optimized. Figure 1 shows that, of the three models A, B, and C, model B is performance-
optimal because its prediction, yB, is closest to the measurement, yTest. Note that the concepts 
illustrated in Figure 1 can be generalized to account for experimental uncertainty by defining the 
test-analysis correlation metrics in terms of statistical tests. 

 
Figure 1. Conceptual illustration of decision-making strategies applied to model validation. 

The second class of decision-making methods (robustness) minimizes the vulnerability of 
performance metrics to the uncertainty. The robust-optimal solution for model validation is the 
model whose prediction accuracy changes the least given the sources of uncertainty and lack-
of-knowledge considered. Of course, the cost to pay is the sub-optimal prediction accuracy. The 
robust-optimal model of Figure 1 is model C because it is the one whose predictions change the 
least due to modeling uncertainty. This implies that the prediction accuracy of model C is least 
deteriorated even if some of its modeling assumptions are erroneous. In contract, model A may 
be more predictive than model C, but its prediction accuracy could be worse than expected 
should its modeling assumptions be not exactly correct. 

The third class of decision-making methods (margin analysis) requires an assessment of 
prediction uncertainty that combines all sources of uncertainty that can reasonably be estimated 
such as experimental variability, mesh convergence errors, prediction uncertainty due to model 
parameter variability and modeling lack-of-knowledge. Safety factors can be added to guarantee 
that the effect of any source of uncertainty not accounted for in the analysis is included. Note 
that, here, the concept of optimization does not really apply. All models whose predictions fall 
within the prediction uncertainty bounds are acceptable. Model D shown in Figure 1 is therefore 
validated based on the fact that its prediction, yD, falls within the acceptable range. 

Clearly, fidelity-to-data and robustness-to-uncertainty are important attributes of any family 
of models. It may be argued, however, that the most important aspect of prediction credibility is 
the assessment of confidence in prediction, which is generally not addressed in the literature. 
Confidence in prediction here refers to an assessment of prediction accuracy away from 
settings where physical experiments have been performed, which must include a rigorous 
quantification of the sources of variability, uncertainty, and lack-of-knowledge, and their effects 
on model-based predictions. Unfortunately, these three attributes are antagonistic [4, 5], 
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meaning that improving two of them comes to the detriment of the third one. This suggests a 
decision-making strategy in situations where knowledge is severely lacking: studying the trade-
offs between fidelity-to-data, robustness-to-uncertainty, and confidence in predictions. 

In Section 2, conceptual illustrations and rigorous definitions are proposed for the concepts 
of fidelity-to-data R, robustness-to-uncertainty α*, and prediction “looseness” λY. Looseness 
refers to the range of predictions made by a family of equally robust models, and this definition 
is needed only to prove the main Theorem [4, 5] in Section 3. The main contribution of this 
publication is to link the prediction looseness λY to a confidence level CF via the concept of total 
uncertainty TU defined in Section 5. It results an inverse relationship between confidence and 
looseness (confidence decreases when looseness increases), from which the antagonism 
between fidelity-to-data, robustness-to-uncertainty, and confidence in prediction is derived. 

These concepts are illustrated in Sections 4 and 7 with an engineering application where a 
family of models is developed to predict the acceleration levels obtained when impacts of 
varying levels propagate through layers of crushable hyper-foam material of varying thicknesses 
[14, 15]. Convex modeling is invoked to represent a severe lack-of-knowledge about the 
constitutive material behavior. The analysis produces intervals of performance metrics from 
which the total uncertainty and confidence levels are estimated. Finally, performance, 
robustness and confidence are extrapolated throughout the validation domain to assess the 
predictive power of the family of models away from tested configurations. 

2. Fidelity, Robustness, and Prediction Looseness 
Even though the conventional activities of model V&V are generally restricted to improving 

fidelity-to-data through the correlation of test and simulation results, and the calibration of model 
parameters, the other two components are equally critical. The reason is that optimal models, in 
the sense of models that minimize the prediction errors with respect to the available test data, 
possess exactly zero robustness to uncertainty and lack-of-knowledge [9]. This means that 
small variations in the setting of model parameters, or small inaccuracies in the knowledge of 
the functional form of the models, can lead to an actual fidelity that is significantly worse than 
the one demonstrated through calibration. 

In this Section, conceptual illustrations and rigorous definitions are proposed for the fidelity-
to-data R, robustness-to-uncertainty α*, and prediction looseness λY. The theoretical results that 
establish the relative sensitivities of R, α*, and λY are then summarized in Section 3. 

2.1 Validation Domain and Uncertainty 
Throughout the manuscript, the numerical simulation is represented as a “black-box” input-

output relationship between inputs p and q and outputs y: 
)qM(p;y o=  (1)

where the subscript ( )o represents the nominal condition of a quantity or state, and: 
• The quantity y denotes the observable outputs. They can be scalar quantities, which is the 

case assumed here for simplicity, or vectors. The model outputs are usually features 
extracted from a large-order or large-dimensional response. 

• The quantity p denotes the control parameters of the numerical simulation and physical 
experiments. These inputs define the validation domain, as explained below. An example 
is settings such as the angle of attack, flow velocity of an aero-elastic simulation whose 
purpose is to predicts a coefficient of lift y = CL. 

• The quantity q denotes parameters that specify the structure and coefficients of the family 
of models developed to represent the physical phenomenon of interest. These inputs 
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define the uncertainty domain, as explained below. The inputs q can include discrete and 
continuous variables that define modeling assumptions and functional forms. 

The most important distinction between inputs p and q is that the control parameters p 
define the validation domain while calibration parameters q define the sources of uncertainty. 
The validation domain, denoted by DP, represents the design space over which predictions are 
made and physical experiments performed. The prediction accuracy must be established for all 
settings p in the design domain DP. Figure 2 illustrates a two-dimensional design space (p1;p2) 
where predictions or experiments are made. The uncertainty domain, denoted by Uα, represents 
the sources of modeling uncertainty that must be propagated through the numerical simulations. 
The Probability Density Function (PDF) shown in Figure 2 illustrates the uncertainty of 
predicting the response y, when uncertainty is propagated through the numerical simulations 
from the inputs q that vary within the domain Uα to the output y. A key distinction between the 
validation (DP) and uncertainty (Uα) domains is that different modeling choices may change the 
uncertainty domain, while the validation domain never changes.4 

 
Figure 2. Validation domain, DP, and propagation of uncertainty from Uα to y. 

The family of predictive models is represented in a generic sense by the equation: 
{ } 0αfor      ,   αqq      q)  M(p;U oα ≥≤−=  (2)

where the horizon-of-uncertainty is denoted by a positive scalar α. A member Uα of the family 
of models, at a given horizon-of-uncertainty α, includes all models consistent with the definition 
of uncertainty in equation (2). For example, the behavior of a material may not be known with 
certainty. Having to choose between, say, linear elastic, perfectly plastic, or visco-elastic models 
represents a lack-of-knowledge. Parameters q in equation (2) may include a flag that takes the 
values “linear”, “plastic”, and “visco-elastic”, in addition to the unknown coefficients (modulus of 
                                                           
4 An example is modeling the propagation of a transient through a structure. This is fundamentally a wave 
propagation problem that can be modeled with the continuous wave equation. In this case, unknowns 
represented by Uα are the speeds of sound of various materials and coefficients of wave reflection at the 
interface between materials. On the other hand, the same problem can be approximated using a discrete 
method such as finite element modeling. Unknowns represented by Uα are then the material properties, 
damping properties, and numerical coefficients of the spatial-temporal discretization. Definitions and 
dimensions of the two uncertainty domains differ. In both cases, however, the validation domain remains 
the same. It is defined, for example, by the range of loading conditions that must be simulated. 
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elasticity, yield stress, etc.) that define these models. In the absence of epistemic uncertainty, 
no alternative to the nominal model y = M(p;qo) would be feasible. 

It is emphasized that the members Uα of the family of models become increasingly inclusive 
as the parameters q are allowed to differ from their nominal settings qo. As the horizon of 
modeling uncertainty increases, more and more alternative models become candidates and are 
included in Uα. Note that these definitions are purposely broad to encompass a wide range of 
models and uncertainties. 

2.2 Fidelity-to-data, R 
Fidelity-to-data represents the distance R, assessed with the appropriate metrics, possibly 

a statistical test if probabilistic information is involved, between physical measurements yTest and 
simulation predictions y at a given setting p: 

yyR Test −=  (3)

The symbol yTest denotes physical measurements. Measurements are made at specific 
experimental configurations controlled by the parameters p. The norm || || defines the test-
analysis correlation metric and is application-specific. Note that the fidelity metric R needs not 
be necessarily defined in terms of a difference between measured and predicted response 
features. Correlation coefficients as well as statistical tests of consistency between populations 
of values {yTest} and {y} are admissible. 

 
Figure 3. Measurement, prediction, and fidelity-to-data metric R. 

Fidelity-to-data is pictured in Figure 3 as the vertical distance between a measurement yTest 
and a prediction y for the physical experiment and numerical simulation performed at a given 
setting (p1;p2). It is assumed in Figure 3 that the calibration variables q are kept constant and 
equal to their nominal values, q = qo, because no “spread” of predictions (y) is shown. 

2.3 Robustness-to-uncertainty, α* 
Robustness-to-uncertainty refers to the range of parameters q that provides no more than a 

given level RMax of prediction error. The symbol RMax denotes the aspiration of fidelity-to-data 
for all models considered. It represents a value of prediction error not to be exceeded. This 
means that a model is rejected during the robustness analysis if its fidelity-to-data is poorer than 
the aspiration, or R > RMax. 
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The robustness α* of the family of uncertainty models {Uα} for all values of the horizon-of-
uncertainty (α > 0) is defined mathematically by solving the following embedded optimization: 

{ }{ }  RR  min  max*α MaxUq0α α

≤=
∈≥

 (4)

Equation (4) defines the robustness α* as the largest amount of uncertainty that can be 
tolerated in the knowledge of the model and its parameters, while guaranteeing a fidelity-to-data 
at least equal to RMax. It could happen that the robust-optimal model features a better fidelity-to-
data, or R < RMax, a situation referred to as opportunity from uncertainty [9]. Figure 4 illustrates 
the key point of robustness: the horizon-of-uncertainty α* solution of equation (4) is the largest 
amount of uncertainty that can be tolerated while guaranteeing that all models included in the 
family Uα* satisfy the aspiration of fidelity-to-data RMax. 

 
Figure 4. Robustness to uncertainty α* at the aspiration of fidelity-to-data RMax. 

In Figure 4, the uncertainty domain Uα represented on the horizontal axis should not be 
confused with the validation domain shown in Figures 2 and 3. The validation domain DF is two-
dimensional and described by the pair (p1;p2). The uncertainty domain Uα is one-dimensional, 
which means that the sources of epistemic uncertainty of the numerical simulation are described 
by a single scalar quantity q. Figure 4 illustrates that all models inside the uncertainty domain of 
size α* provide prediction accuracies equal to or better than RMax. However, robustness cannot 
be extended beyond the value α* shown because the “next” family of models Uα’ contains a 
member whose prediction accuracy is worse than RMax. 

The formalism developed through the concepts of horizon-of-uncertainty and family {Uα} 
accommodates a wide variety of uncertainty and lack-of-knowledge models. The only property 
upon which the definition of robustness (4) relies is the concept of structural nesting. It simply 
means that increasing values of the horizon-of-uncertainty parameter α must result in nested 
domains Uα. Reference [9] gives examples of convex models that satisfy the nesting property. 
Clearly, a large robustness (α*) is more desirable than a small one (α’) because the family Uα* 
encompasses all events defined in the family Uα’, or Uα’ ⊂ Uα*. A large robustness indicates that 
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potentially large uncertainty or lack-of-knowledge does not deteriorate the prediction accuracy 
by more than RMax. 

2.4 Prediction Looseness, λY 
In this section we explore the “looseness” of model prediction: the range of predicted values 

deriving from equally robust models. The importance of prediction looseness stems from the 
fact that, to predict with confidence, there should be little difference (or small looseness λY) 
between the predictions of equally robust models. Section 6 further explores the relationship 
between prediction looseness λY, total uncertainty TU, and confidence in prediction CF.5 

As before, α* denotes the robustness-to-uncertainty of models y = M(p;q) and Uα* denotes 
the family of models whose prediction accuracies are no worse than the aspiration RMax. If the 
robustness α* is large, then Uα* contains a wide range of models. The prediction looseness of 
the family of models is defined as the range of predictions in Uα*: 

q) M(p;min      q) M(p;maxλ
α*α* UqUqY ∈∈

−=  (5)

Figure 5 illustrates prediction looseness by showing the range λY of predictions obtained 
from all models included in the family Uα* of robustness α* and aspiration of fidelity-to-data RMax. 

 
Figure 5. Prediction looseness λY at robustness and fidelity aspiration (α*;RMax). 

Defining the range of predictions (5) over a family of models is needed to achieve the main 
theoretical results derived in References [4, 5]. It may not be the most appropriate to represent 
the concept of confidence in prediction, but looseness and confidence are clearly related. The 
connection between λY and CF is that confidence generally increases when different sources of 
evidence reach the same conclusion. Confidence arises from consistency, which is intuitively 
connected to the notion of prediction looseness λY over the family Uα* of predictive models. This 
is important for model validation because one of the goals of V&V is to establish confidence in 
                                                           
5 It is noted that a definition of “confidence” for science-based prediction has yet to be proposed. The only 
concept that is remotely connected is the notion of confidence interval in probability and statistics. The 
definition of confidence in Section 6 offers the advantages of conceptual simplicity and computational 
efficiency, but it is recognized that this is work in progress to a great extent. 
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science-based predictions by estimating the consistency, or lack thereof, provided by equally 
credible modeling techniques. 

2.5 Modeling and Aggregating Uncertainty 
The formalism developed through the concepts of horizon-of-uncertainty α and family of 

models {Uα} accommodates a wide variety of uncertainty modeling.6 In fact, a family of models 
such as shown in equation (2) that, in addition, satisfies the nesting property (see Section 2.3) 
defines a model of information-gap. In the theory of information-gap for decision-making, the 
difference between what is currently known and what needs to be known to make a decision is 
modeled. Models of ignorance are hence associated to gaps in knowledge [8, 9]. This is a 
significant departure from other representations of uncertainty, such as probability theory, that 
attempt to model randomness itself. Doing so requires strong assumptions that might not be 
justifiable in the case of severe lack-of-knowledge.7 

It is not advocated here that epistemic uncertainty should be represented using information-
gap. Our opinion is that there is no such thing as a “best” theory to represent uncertainty. Some 
theories, such as probability theory, are based on well-accepted axioms and they offer powerful 
algebraic rules [16]. Others, such as the Dempster-Shafer theory of plausibility and belief, can 
accommodate ambiguity and irrational reasoning [17]. Others yet, such as the theory of random 
sets, offer a degree of generality that is advantageous to derive models of uncertainty for sparse 
experimental data sets [18]. What should ultimately dictate the choice of a theory for modeling 
uncertainty is the purpose of the analysis and the amount of evidence available to justify the 
assumptions upon which the theory is based, or lack thereof. 

If one accepts potentially different theories to represent uncertainty, what then becomes 
essential is the ability to aggregate, or combine, the uncertainty. The integration of uncertainty 
and definition of total uncertainty metrics are marginally addressed in Section 5. The short 
discussion presented in this publication does not communicate the depth of the research and 
development undertaken at Los Alamos National Laboratory in these areas. To read more on 
these topics, the reader is referred to References [19, 20]. 

3. Foundational Theorems of the “Myth” of Predictive Modeling 
In this Section, the theoretical foundations needed to discuss the “myth” of science-based 

predictive modeling are developed. The main two theorems are summarized for completeness. 
The first one, which derives from a more general formulation in Reference [9], establishes the 
antagonism between fidelity-to-data and robustness-to-uncertainty. The second one establishes 
the antagonism between robustness-to-uncertainty and looseness in prediction, as shown in 
References [4, 5]. Section 6 extends these findings to the notion of confidence in prediction in 
the particular case of an interval-valued estimation of output uncertainty. At this point, closure is 

                                                           
6 A first example is a probabilistic model of variability where standard deviation and covariance values are 
controlled by the parameter α. A second example is a possibility structure defined to represent a lack-of-
knowledge, where the size of intervals is proportional to the parameter α. A third example is a family of 
fuzzy membership functions defined to represent expert judgment and linguistic ambiguity, where the 
membership functions are parameterized by the parameter α. 
7 In probability theory, for example, the frequency of occurrence of random events needs to be assessed. 
Enough measurements and observations might not be available to confidently derive a probability density 
function. In extreme cases, only ranges of values can be obtained. Defining a model of uncertainty such 
as probabilities, possibilities, or a fuzzy structure, might require assumptions that the available evidence 
simply does not support. 
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brought to the theoretical foundation and discussion of a strategy for science-based predictive 
modeling can start. 

3.1 Strategies for Model Selection 
We start by discussing strategies for model selection, where the question asked is the 

following one: “Given two or more competing models, which one is most appropriate to solve a 
particular problem?” Although V&V should not be reduced to a model selection problem, such 
question is of great interest for model validation because it constantly arises when analysts are 
faced with equally credible alternative modeling choices. 

The conventional paradigm for model selection is, not surprisingly, to optimize goodness-of-
fit or fidelity-to-data. We have seen that such strategy entails choosing the member of a family 
of models according to the optimal fidelity-to-data criterion. Fidelity-to-data defines a preference 
ordering where model y = M(p;qA) is preferred to model y = M(p;qB) if RA < RB. The model that 
provides the best goodness-of-fit or fidelity-to-data, R*, is selected where R* is the smallest of 
values for all models included in the uncertainty domain (Uα) up to the horizon-of-uncertainty α. 

The inappropriateness of this strategy for choosing a model comes from the fact that the 
horizon-of-uncertainty, α, is generally unknown.8 Not knowing the values of some parameters 
with certainty, or what the structural form of the model should be, represents a first level of 
epistemic uncertainty. A second level is to ignore how far from our best educated guess the 
solution should be searched, or whether that matters at all. Capturing the complexity of these 
two levels is to investigate the extent to which the best model performance is vulnerable to the 
lack-of-knowledge. This means that, in addition to searching for the best model within a family 
Uα, the robustness of its performance R* to increasing levels of uncertainty should be examined. 

Just like the fidelity-optimal strategy for model selection defines an ordering preference 
where the model y = M(p;qA) is preferred to the model y = M(p;qB) if RA < RB, the robustness-
optimal strategy defines an ordering preference where the model y = M(p;qA) is preferred to the 
model y = M(p;qB) if the former is more robust to uncertainty, that is, αA > αB, at the common 
aspiration of fidelity-to-data RMax. As mentioned previously, a large robustness is more desirable 
than a small robustness because it indicates that potentially large sources of lack-of-knowledge 
do not deteriorate the prediction accuracy by more than RMax. An alternative model selection 
strategy is therefore to identify models associated with the largest robustness-to-uncertainty. 

3.2 Theoretical Results 
The first Theorem summarized below for completeness establishes that a trade-off arises 

between fidelity-to-data and robustness-to-uncertainty. Instead of fixing, somewhat arbitrarily, 
the level of lack-of-knowledge represented by the symbol α and optimizing the fidelity-to-data, 
robustness-to-uncertainty α* can be maximized for a given aspiration of accuracy RMax. 

Theorem 1: Let {Uα} denote an information-gap family of models that obeys 
the axiom of nesting. Its fidelity and robustness functions are denoted by R 
and α* = α*(qo;RMax), respectively. Consider two requirements of fidelity, RA,Max 
and RB,Max. If RA,Max ≥ RB,Max, then α*(qo;RA,Max) ≥ α*(qo;RB,Max). 

                                                           
8 An example in mechanical engineering is the definition of a friction coefficient between two materials. A 
value may be available from the literature, but the extent of the variability is typically unknown. What is 
even more difficult to assess is the suitability of the Coulomb friction model, for which a friction coefficient 
is sought, to represent the mechanics of friction. Friction un-doubtfully involve stick-and-slip and complex 
micro-mechanics that the Coulomb model only approximates. The accuracy of the model compared to the 
“true-but-unknown” behavior is generally unknown. 
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Theorem 1 states that robustness-to-uncertainty increases monotonically as the minimal 
required aspiration of fidelity-to-data increases. Recall that R is defined in equation (3) as a test-
analysis correlation error. It implies that increasing RMax corresponds to a decrease in prediction 
accuracy. The Theorem therefore states that prediction accuracy and robustness-to-uncertainty 
are antagonistic attributes of the family of models.9 A proof can be found in Reference [9]. 

The second Theorem establishes that a trade-off arises between robustness-to-uncertainty 
and looseness in prediction, or the range of predicted values obtained from models which all 
satisfy a specified aspiration of fidelity-to-data. The notion of prediction looseness is important 
because it relates to the confidence that one has in predictions of equally credible models. The 
Theorem implies that maximizing robustness-to-uncertainty may have detrimental effects on the 
ability of equally credible models to make consistent predictions. 

Theorem 2: Let {Uα} denote an information-gap family of models that obeys 
the axioms of nesting and translation.10 Its robustness and looseness 
functions are denoted by α* = α*(qo;RMax) and λY = λY(qo;RMax), respectively. 
Consider two initial models, qA,o and qB,o. If α*(qA,o;RMax) ≥ α*(qB.o;RMax), then 
λY(qA,o;RMax) ≥ λY(qB.o;RMax). 

Theorem 2 states that looseness in prediction increases as the robustness-to-uncertainty 
increases. Greater looseness means that the models included in the family Uα* (centered about 
the “nominal” model qA,o, with robustness α*(qA,o;RMax), and aspiration of fidelity-to-data RMax) 
tend to make predictions inconsistent with one another. It ultimately translates into a lesser 
degree of confidence in the prediction accuracy of the family of models, as shown in Section 6. 
The Theorem therefore states that robustness-to-uncertainty and looseness in prediction are 
antagonistic attributes of the family of models.11 A proof can be found in Reference [7]. 

The proofs provided in References [7, 9] rely on a description of uncertainty that uses the 
theory of information-gap. The main advantage is that no restrictive assumption is made 
regarding the source of uncertainty and type of mathematical representation. Information-gap 
models can be built to encompass a wide range of uncertainty: probabilistic, non-probabilistic, 
linguistic ambiguity, modeling lack-of-knowledge, etc. Conventional descriptions of uncertainty, 
such as probabilistic models, can be viewed as models of information-gap as long as families of 
nested convex sets can be defined. This makes the results of Theorems 1 and 2 applicable to a 
wide range of situations. It is noted, however, that a practical limitation of robustness analyses is 
the amount of calculations needed to solve the saddle-point optimization of equation (4). 
                                                           
9 Note that the antagonism between accuracy and robustness does not mean that it is impossible to find a 
high-fidelity model that is, at the same time, very robust to the uncertainty considered when defining the 
family {Uα}. It may be possible to derive a model that is true to the data and robust to the uncertainty. The 
Theorem simply states that, if such model exists, increasing its fidelity-to-data even more will result in a 
degradation of robustness. Similarly, increasing its robustness even more will deteriorate its accuracy. 
10 Nesting expresses that, as the horizon-of-uncertainty increases, the family of models includes all 
previously included models, plus new ones. Translation expresses that two families of models that share 
the same horizon-of-uncertainty only differ in their center points. A simple example of information-gap 
model that satisfies these two properties is a scalar q that varies in an interval [-α; +α]. The nominal value 
of q is qo = 0, and increasing values of α define a family of nested intervals. These two technical points 
are needed to prove the Theorem, but it can be verified that they do not restrict its applicability. 
11 As noted previously for the antagonism between accuracy and robustness, it may be possible to define 
a highly robust family of models that make highly consistent predictions. The Theorem simply states that 
increasing its robustness even more will result in a loss in prediction consistency. Similarly, “tightening” 
the range of predictions made (or reducing the looseness) will come at the cost of loosing robustness. 
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3.3 The Trade-offs of Prediction Credibility 
It is our contention that three quantities are central to the discussion of science-based 

prediction credibility: fidelity-to-data of the family of models, RMax; robustness-to-uncertainty, α*; 
and looseness in prediction, or range of predictions, λY. The trade-off of Theorem 1 between 
fidelity and robustness can be best expressed by the compact inequality: 

0
R
α*

Max

≥
∂

∂
 (6)

which means that an increase in robustness comes at the cost of relaxing the aspiration of 
prediction accuracy or, equivalently, increasing the maximum authorized error RMax. Likewise, 
the trade-off of Theorem 2 between robustness and looseness can be expressed as: 

0
α*
λY ≥

∂
∂

 (7)

which means that an increase in robustness comes at the cost of loosing consistency between 
the predictions made by all models included in the family, up to the fidelity and robustness levels 
RMax and α*, respectively. 

Clearly, multiplying equations (6) and (7) provides a third inequality that expresses that λY 
increases when RMax is increased. Hence the discussion: 

• Robustness decreases as fidelity improves. Numerical simulations or models made to 
better reproduce the available test data become more vulnerable to potential errors in 
modeling assumptions, errors in the functional form of the model, and uncertainty and 
variability in the model parameters. 

• Looseness increases as robustness improves. Numerical simulations or models that are 
more immune to uncertainty and modeling errors provide a wider range of predictions. This 
translates into less consistency between the predictions of models that belong to the same 
family, which decreases confidence in our ability to forecast configurations, settings or 
environments that have not been tested experimentally. 

• Looseness decreases as fidelity improves. Numerical simulations or models made to 
better reproduce the available test data provide more consistent predictions when asked to 
forecast settings that have not been tested experimentally. Although intuitive, this is not 
necessarily a good thing when modeling is extrapolated to configurations very different from 
those tested. It may lead to a false sense of confidence achieved artificially through 
excessive calibration of the models. 

These trade-offs imply that it is not possible to improve, simultaneously, fidelity-to-data, 
robustness-to-uncertainty, and consistency in predictions. High fidelity (small RMax) implies that 
the models are true to the measurements, which adds warrant to the family of models. Large 
robustness (large α*) strengthens belief in the validity of the family of models because its 
members are less vulnerable to epistemic uncertainty. High consistency in predictions (small λY) 
implies that all the models that are equivalent in terms of fidelity, also agree in their predictions 
when forecasting new, potentially not yet observed, behaviors. Our analysis shows that past 
measurements, accompanied by incomplete understanding of the measured process, cannot 
unequivocally establish true prediction of the behavior of the system. 

One may now ask what these theoretical results entail for the problem of model selection. It 
has been argued that the commonly encountered paradigm of optimizing goodness-of-fit is not 
appropriate because it leads to non-unique solutions. In addition, this strategy negates the fact 
that the magnitude of our ignorance is often unknown. Worse, fidelity-optimal models provide no 
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robustness-to-uncertainty, which means that small errors in modeling assumptions or parameter 
values can lead to large prediction errors [9]. We are not advocating that fidelity-optimality, as a 
decision strategy for selecting and validating models, be systematically replaced by robustness-
optimality. Nevertheless, the basis for selecting and validating models should be to understand 
the trade-off between the aspiration of fidelity-to-data, RMax, and robustness-to-uncertainty, α*, 
for a given requirement of confidence in prediction, CF. In Section 6, a connection is proposed 
between looseness (λY) and confidence (CF) via a total uncertainty metric defined for intervals. 

4. An Application to Predictive Modeling in Engineering 
The theory discussed in Section 3 is illustrated with results from an engineering application. 

The purpose is to validate the predictions of numerical models that simulate the behavior of a 
non-linear crushable foam material when traversed by a short-duration impact wave. Details of 
the experimental set-up and modeling uncertainty can be obtained from References [14, 15]. In 
the following, the modeling and main source of uncertainty are briefly described. Numerical 
predictions are compared to measurements collected during four experiments to establish the 
accuracy of each model. Trade-offs between fidelity-to-data and robustness-to-uncertainty are 
illustrated. Extension to the third dimension of confidence in prediction is proposed in Section 7, 
after a connection between looseness and confidence has been derived. 

4.1 Numerical Modeling of the Crushable Foam Impact Experiment 
In References [14, 15], the behavior of the layers of foam material subjected to impacts are 

simulated via finite element modeling and analysis. Here, the numerical models are based on 
single degree-of-freedom oscillators that obey the following equation of vibration: 

( ) 0(t)Fkx(t)(t)xcγ(t)(t)xm NL =+++− &&&  (8)
where m, c, and k denote the mass, viscous damping, and linear stiffness coefficients and FNL 
represents the contribution of a non-linear internal force. The oscillator is initially at rest and the 
equation of motion is integrated over a period of time [t0;tF]. The signal γ(t) is specified by the 
analyst; it represents the acceleration record that results from the impact applied at the base of 
the layer of foam material. 

To integrate the equation of motion, a sub-model of internal force must be specified by the 
analyst. Three examples are the bi-linear, quadratic, and cubic non-linearity models illustrated in 
equations (9), (10), and (11), respectively: 

⎩
⎨
⎧

≥+
≤+

=
LBo

LAo
NL xx if   , x(t)kF

xx if   , x(t)kF
(t)F  (9)

( )2
2oNL x(t)kF(t)F +=  (10)

( )3
3oNL x(t)kF(t)F +=  (11)

The physical meaning of coefficients such as (Fo;kA;kB) for the bi-linear model is unclear 
because the equation is a mathematical idealization, not based on a fundamental understanding 
of how the crushable foam behaves. Likewise, the values of coefficients (m;c;k) of equation (8) 
cannot be directly inferred from dimensional or material analysis of the foam material. These 
sub-models and values of coefficients are unknown, yet, the analyst must select them to make 
predictions. Convex models of uncertainty are developed to account for the lack-of-knowledge. 
Robustness analyses assess the vulnerability of prediction accuracy to the choice of forcing 
function sub-model and coefficient values. 
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Figure 6. Definition of the peak acceleration (PAC) and time-of-arrival (TOA) features. 

The numerical simulation provides an acceleration signal from which two response features 
are extracted. They are the peak acceleration and time-of-arrival, that is, the time it takes to the 
peak acceleration to travel from one side of the foam layer to the other. The response features 
are denoted by the symbols PAC and TOA, respectively. Figure 6 shows an input acceleration 
signal γ(t) in red, dashed line; the corresponding output x(t) in blue, solid line; and how the PAC 
and TOA features are calculated. The prediction accuracy of a model is quantified by calculating 
a test-analysis correlation metric between the measured and predicted values of (PAC;TOA). 

4.2 Sources of Lack-of-knowledge and Models of Uncertainty 
The main source of uncertainty considered in this analysis arises from not understanding 

the constitutive behavior of the crushable foam. Figure 7 shows data obtained from four physical 
experiments. The center curve, labeled “Sample 1” and shown in blue solid line, represents the 
nominal strain-stress curve. The other curves are acceptable realizations of material behavior. 
Such uncertainty matters greatly because selecting a constitutive law that describes how the 
material behaves or, equivalently, selecting an internal force sub-model FNL(t), is a critical step 
of building the numerical simulation. 

Figure 7 illustrates a rather severe lack-of-knowledge about the material, which raises the 
question of how to represent such uncertainty mathematically. Clearly, deriving a probability law 
based solely on the evidence captured by Figure 7 would be nothing short of crystal-ball 
reading. For the same reason, we are not confident postulating a possibility structure, basic 
Dempster-Shafer probability assignments, or fuzzy membership functions, to name only a few. It 
is recognized that more testing could be performed, and formal expert elicitation techniques are 
available to help capture knowledge. The merits of acquiring more knowledge, in one form or 
another, can never be over-stated. Nevertheless, Figure 7 illustrates a practical reality where 
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decisions must often be made in the context of severe uncertainty because of constraints such 
as timetables, budgets, staffing, and lack of testing. 

 
Figure 7. Four test samples of strain-stress curve for the crushable foam material. 

In this study, the material behavior uncertainty is represented by a family of convex sets Uα. 
The nominal stress-strain curve is denoted by qo. It represents the best available knowledge, 
here, the curve labeled “Sample 1” in Figure 7. The horizon-of-uncertainty α is a parameter that 
has no explicit physical meaning but measures how far away from the nominal knowledge one 
is willing to define a strain-stress curve, denoted by q. A curve is defined by selecting the bi-
linear model (9), quadratic model (10), or cubic model (11), and its appropriate coefficients. For 
simplicity, the analysis is restricted to the bi-linear, quadratic, and cubic models, but nothing 
would prevent us from including other types of strain-stress curves or non-parametric models. 
Distance between a strain-stress curve, q, used for the numerical simulation and the nominal 
curve, qo, is quantified with the Root Mean Square (RMS) metric: 

( ) ( ){ } αqqqq that  such q"" Curves stressStrain U o
T

oα ≤−−−=  (12)

Definition (12) indicates that an internal force sub-model (9), (10), or (11) is included in the 
uncertainty domain Uα if the corresponding strain-stress curve, q, does not deviate from the 
nominal material model, qo, by more than the RMS distance α. Figure 8 illustrates conceptually 
the domains Uα. Three domains are shown for increasing values of the horizon-of-uncertainty, 
α1 < α2 < α3. It can be verified that definition (12) satisfies the nesting property. All strain-stress 
curves included in the domain Uα are automatically included in the domains defined by larger 
values of the horizon-of-uncertainty. The family {Uα, α>0} becomes increasingly inclusive of 
material models as the uncertainty represented by the parameter α increases. 
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Figure 8. Family of convex models of uncertainty {Uα, α>0} for the non-linear forcing function. 

Another key departure between information-gap analysis of robustness and other strategies 
for decision-making, such as reliability, is that the former accommodates unbounded horizons of 
uncertainty. We do not know how far the “true” strain-stress curve of the foam material is from 
our nominal best-guess. Therefore, the amount of uncertainty should not be determined a priori. 
The horizon-of-uncertainty, α, is an unknown of the robustness analysis. 

Finally, it is mentioned that epistemic uncertainty is restricted to the constitutive behavior of 
the crushable foam. Other unknowns include the coefficients of the mass, viscous damping, and 
linear stiffness contributions to equation (8). They are kept constant and equal to calibrated 
values obtained by searching for the linear oscillator whose predictions best match the test data. 

4.3 Physical Experiments and Domain of Validation 
Physical experiments are performed to measure the response of the crushable foam to 

impact loading. Impacts are generated using a drop table launched from various heights. In 
addition, foam pads of different thicknesses are used during the experiments. Four settings are 
tested by combining low and high impact heights with thin and thick foam pads [14, 15]. 

During each physical experiment, the input and output acceleration signals, γ(t) and x(t), are 
recorded and response features yTest = (PAC;TOA) are extracted from the measurements. In 
addition, each impact is repeated several times (ten replicates with low drop heights, five with 
high drop heights) to estimate the effects of environmental variability and unknown conditions of 
the experiment that cannot be controlled. Populations of measured features yTest are collected 
from which statistics can be estimated, such as the mean vector of response features and the 
matrix of variance and covariance coefficients. 

The concept of validation domain introduced in Section 2.1 needs to be defined for the 
crushable foam impact application. Control parameters of the physical experiments, drop height 
and foam pad thickness, define the two-dimensional domain within which predictions must be 
obtained. One reason for wanting to substitute numerical predictions to physical experiments is 
that experimenting with all combinations of drop height and foam pad thickness would be too 
expensive and time consuming. Analyzing the equation of motion (8), on the other hand, is very 
efficient, provided that prediction accuracy can be guaranteed. The two parameters, drop height 

qo

Strain

Stress 

Uα for α1=0.3 

Uα for α2=0.5 

Uα for α3=0.7 
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and foam pad thickness, therefore define the operational space of interest. Validation is 
achieved when the prediction accuracy of the numerical simulation and, consequently, the sub-
model of internal force that idealizes the constitutive behavior of the crushable foam, have been 
assessed within the operational domain. 

 
Figure 9. Validation domain, four configurations tested, and TOA measurements. 

Figure 9 shows the two-dimensional domain of validation and measured values of response 
feature TOA. According to the nomenclature defined in Section 2.1, the two control parameters 
are denoted by p = (p1;p2), and they represent the drop height and foam pad thickness. The 
replicate measurements of the time-of-arrival feature are shown for each configuration tested. 

4.4 Quantitative Metric of Test-analysis Correlation 
The metric defined to quantify the prediction accuracy of the numerical simulation (8), or 

test-analysis correlation error, is a weighted L2 norm of the prediction error: 

( ) ( )q)y(p;yWq)y(p;yR          ,
TOA
PAC

q)y(p; Test1
yy

TTest −−=
⎭
⎬
⎫

⎩
⎨
⎧

= −  (13)

where y(p;q) represents the two-feature vector predicted by the numerical simulation and yTest is 
the mean vector of measurements. The weighting Wyy is a constant matrix that eliminates the 
dimensional difference between the units of PAC and TOA. It is initialized using variance and 
covariance coefficients estimated from the population of replicate measurements. The notation 
y(p;q) emphasizes that predictions are made for a given configuration of drop height and foam 
pad thickness (denoted by p) and given internal force sub-model (denoted by q). 
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The weighted L2 norm defined in equation (13) accumulates prediction error that originates 
from both features, PAC and TOA, without any power of discrimination. In Section 4.5, relative 
differences are also calculated to establish the accuracy of PAC predictions separate from the 
accuracy of TOA predictions: 

% 
y

q)y(p;y 100R Test

Test −=  (14)

where y(p;q) and yTest now represent a single feature, either PAC or TOA. In equation (14), the 
prediction error R is expressed in percent of the mean measured value. 

4.5 Trade-offs Between Prediction Accuracy and Robustness-to-uncertainty 
The results of an information-gap analysis of robustness are now examined to study the 

trade-offs between fidelity-to-data and robustness-to-uncertainty. Figure 10 shows the best and 
worst prediction errors obtained for increasing values of the horizon-of-uncertainty parameter. 
Results are reported for a single configuration of the system where impact tests are performed 
with the low drop height and thin foam pad. The horizontal axis represents prediction errors (14) 
for the peak acceleration PAC feature. The vertical axis represents the horizon-of-uncertainty, α. 

 
Figure 10. Robustness and opportunity for the configuration (low impact; thin foam pad). 

The procedure to obtain the curves shown in Figure 10 is briefly summarized. At a given 
horizon-of-uncertainty, say α = 0.1, a domain Uα is defined according to equation (12). Uα sets 
bounds on the family of strain-stress curves, q, that are considered legitimate alternatives to our 
current model, qo. An optimization problem is solved to search, within Uα, for the sub-model of 
internal force that yields the worst prediction error, that is, the maximum value of R defined in 
equation (14). The solution is the point R = 2.3% shown on the robustness curve (red, solid line) 
at α = 0.1. A second optimization problem is then solved to search, within Uα, for the sub-model 
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of internal force that yields the least prediction error. The solution is the point R = 1.9% shown 
on the opportunity curve (blue, dashed line) at α = 0.1. The main constraint of both optimization 
problems is that strain-strain curves must be realized within the bounds imposed by the domain 
Uα. The procedure is iterated for increasing values of the horizon-of-uncertainty, α. 

The robustness curve (red, solid line) shows the worst prediction accuracy obtained at any 
level of uncertainty. The opportunity curve (blue, dashed line) shows the best possible accuracy. 
Opportunity illustrates that uncertainty can sometimes be taken advantage of to obtain better 
than expected fidelity-to-data. The robustness and opportunity curves can be discontinuous but 
the fact that increasing horizon-of-uncertainty levels generate nested domains Uα guarantees 
their monotonic natures, increasing for robustness and decreasing for opportunity. 

When the robustness and opportunity curves are considered together, Figure 10 shows the 
ranges of prediction accuracy that can be obtained at any level of uncertainty. For example, the 
prediction error is guaranteed within [1.5%; 2.7%] at the horizon-of-uncertainty level of α = 0.8. 
No matter which material model is selected from the family Uα, its prediction accuracy for Test 1 
will be no worst than 2.7% but no better than 1.5%. A slight increase of uncertainty to α = 0.9 
results in a potential deterioration of prediction accuracy to [1.5%; 6.6%]. The robustness-to-
uncertainty, α*, is defined according to equation (4) as the maximum level of uncertainty that 
can be tolerated while guaranteeing a minimum requirement of fidelity-to-data, RMax. Figure 10 
shows that the robustness of the family of models is α* = 0.8 at the requirement RMax = 3.0%. As 
Theorem 1 indicates, fidelity-to-data worsens as lack-of-knowledge increases, hence, illustrating 
the antagonistic nature between truthfulness to data and robustness-to-uncertainty. 

Naturally, the analysis can be repeated for each configuration of the system. Figures 11-a 
and 11-b show the robustness and opportunity curves obtained with the four configurations for 
predicting features PAC and TOA, respectively. Robustness curves, that is, the worst prediction 
accuracy obtained at any level of uncertainty, are shown with solid lines. Opportunity curves, 
that is, the best prediction accuracy obtained at any level of uncertainty, are shown with dashed 
lines. Figure 11-a indicates that the family of models is very robust to the modeling uncertainty 
when predicting PAC for Tests 3 and 4 (high drop height) because the prediction error does not 
change significantly even at high levels of lack-of-knowledge. Figure 11-b indicates that this is 
not the case for prediction of the TOA response feature. 

Finally, the results pictured in Figure 11 are used to assess fidelity-to-data and robustness-
to-uncertainty throughout the two-dimensional validation domain. Validation is parameterized by 
the drop height and foam thickness because the purpose of modeling is to develop a predictive 
capability to exercise different combinations of the two design variables (p1;p2). Extrapolation 
must be employed here because measurements are not available to calculate a test-analysis 
correlation metric other than at the settings (p1;p2) that have been tested. A simple polynomial-
based extrapolation is performed to obtain the results shown in Figures 12 and 13. Figure 12 
shows the robustness versus fidelity for predicting the PAC feature at six discrete uncertainty 
levels, α = 0.1, 0.3, 0.6, 0.8, 0.9, and 1.0. Likewise, Figure 13 shows the results for predicting 
the TOA feature. The two-dimensional surfaces indicate the expected prediction error at settings 
(p1;p2) that have or have not been tested.12 Extrapolation also makes it possible to estimate the 
overall robustness α* of the family of models to analyze any combination of drop height and 
foam thickness. Such information is extremely useful, for example, to decide where to allocate 
resources for the next round of physical experiments. 

                                                           
12 This is, of course, conditioned upon the assumption that the extrapolation is correct. In this work, 
several polynomials have been developed and the solutions presented in Figures 12 and 13 optimize 
goodness-of-fit while presenting no evidence of over-fitting the data. 
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(11-a) Robustness and opportunity versus accuracy for PAC predictions. 

 
(11-b) Robustness and opportunity versus accuracy for TOA predictions. 

Figure 11. Robustness and opportunity analyses of the four configurations of the system. 
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(12-a) PAC prediction errors at α* = 0.1. (12-b) PAC prediction errors at α* = 0.3. 

  
(12-c) PAC prediction errors at α* = 0.6. (12-d) PAC prediction errors at α* = 0.8. 

  
(12-e) PAC prediction errors at α* = 0.9. (12-f) PAC prediction errors at α* = 1.0. 

Figure 12. Extrapolated robustness-vs.-fidelity surfaces for the PAC feature. 
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(13-a) TOA prediction errors at α* = 0.1. (13-b) TOA prediction errors at α* = 0.3. 

  
(13-c) TOA prediction errors at α* = 0.6. (13-d) TOA prediction errors at α* = 0.8. 

  
(13-e) TOA prediction errors at α* = 0.9. (13-f) TOA prediction errors at α* = 1.0. 

Figure 13. Extrapolated robustness-vs.-fidelity surfaces for the TOA feature. 
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5. Aggregating Uncertainty for Model Validation 
In this Section, the concept of total uncertainty, TU, introduced in References [19, 20] is 

briefly summarized. It is then extended to interval-valued uncertainty models. Although not 
central to the discussion of science-based predictive modeling, a metric of total uncertainty is 
needed as a practical means to get to the notion of confidence. Section 6 proposes a definition 
of confidence based on the TU metric. The step from prediction looseness (λY) to confidence 
(CF) via the TU metric is essential to connect fidelity RMax, robustness α*, and confidence CF. For 
completeness, it is mentioned that other applications where the aggregation of uncertainty plays 
a prominent role include V&V, reliability analysis, and system certification [10, 11, 12, 20]. 

5.1 The Total Uncertainty Metric 
This Section summarizes the on-going development at Los Alamos National Laboratory of a 

metric to aggregate the various forms of uncertainty. Total uncertainty, denoted by the symbol 
TU, is defined as the combination of the two general types of uncertainty: natural variability and 
lack of specific information.13 

A first requirement of the TU metric is that it must be able to aggregate different kinds of 
uncertainties represented by the collection of available mathematical theories. These include 
measure-based theories such as evidence theory, possibility theory, fuzzy set theory, random 
intervals, imprecise probabilities, and probability theory, collectively known as the Generalized 
Information Theories (GIT) [21, 22]. A second requirement is to develop a metric for model 
validation. The metric would aggregate uncertainty estimates coming from physical experiments 
(measurements), numerical simulations (calculations), and expert judgment (opinions). A third 
requirement of the TU metric is that it must generalize to multivariate or multi-dimensional 
comparisons when several response features or time series are considered. The fourth and final 
requirement is to develop a scaled metric to facilitate the relative comparison between several 
values. A natural, although arbitrary, choice is that the value TU = 0 represents the case of 
complete certainty while the value TU = 1 (or TU = +∞) represents the case of total uncertainty. 

In the original development of the TU metric, emphasis is given to two of the more prevalent 
theories of uncertainty for test data and model choice: probability and possibility, respectively 
[19, 20]. The fundamental difference is that probability theory concentrates evidence on the 
singletons of a universe of information, whereas possibility theory locates evidence on 
collections of nested sets within the universe of information. These differences in mathematical 
properties of the two theories make each one suitable for modeling various types of uncertainty 
and less suitable for modeling others.14 

The development of the total uncertainty metric begins by, first, defining an information 
matrix, Hm,2, that collects the possibility and probability distributions in each of its two columns. 
The distributions characterize the uncertainty associated with the estimation of a scalar-valued 
response feature y. Data whose uncertainty is represented by probabilities may come from a 
collection of NTest replicate measurements, {yTest (k), k = 1…NTest}, while data whose uncertainty is 
                                                           
13 Variability is, by definition, irreducible. It cannot be reduced, but only quantified. Lack-of-knowledge, on 
the other hand can be reduced with the acquisition of more information. The taxonomy that uses the 
terms aleatoric (irreducible) and epistemic (lack-of-knowledge or reducible) is often encountered. This 
taxonomy specifically distinguishes statistical variation from other, reducible forms of uncertainty. 
14 For example, probability theory is ideal for formalizing uncertainty in situations where event frequencies 
are known or evidence is based on outcomes of a large number of independent and repeatable trials. 
Possibility theory, by contrast, is ideal for formalizing incomplete information expressed in terms of vague 
or ambiguous terms, or where evidence supports conflicting events. 
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represented by the possibility distribution may originate from the analysis of NModel simulations, 
{y(k), k = 1…NModel}. The information matrix is defined as: 
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where πi and pi are the possibility and probability, respectively, of the ith discrete estimate of the 
value of the (unknown) response feature y. Note that, while the number of physical experiments 
(NTest) may be different from the number of models analyzed (NModel), the populations of y values 
must be discretized into the same number of m bins in equation (15). The calculation of the TU 
metric relies on a Singular Value Decomposition (SVD) of the information matrix Hm,2 [23]. The 
SVD provides orthogonal sets of left and right singular vectors, and a set of singular values: 
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The meaning of the singular vectors contained in the columns of matrices U and V is still 
under investigation in the context of a decomposition of information matrix. The singular values 
σ1 and σ2 can be viewed as measuring the amount and consistency of information provided by 
the possibility, {πi}, and probability, {pi}, distributions. An analogy with the analysis of time series 
in Structural Dynamics is that the singular values represent the amount of energy contained in 
the signals [24]. For the characterization of uncertainty, the singular values represent the total 
energy of the uncertainty in Hm,2, or simply the total uncertainty. The TU metric is given by: 
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where πmax is the largest possibility value in the first column of Hm,2, and pmax is the largest 
probability value in the second column of Hm,2. 

An important property of definition (17) is that the values of the TU metric are, by definition, 
scaled between zero and an upper bound that only depends on m, the number of bins of the 
information matrix Hm,2: 

( )1m2TU0 −≤≤  (18)
The total uncertainty metric is guaranteed to provide values between two extreme conditions on 
uncertainty, that is, between the case of no uncertainty, TU = 0, and the case of maximum 
uncertainty, TU = 2(m-1). Normalizing TU values by the upper bound 2(m-1) provides positive 
numbers between zero and one, which makes it possible to compare them efficiently and also 
eliminates dependency on the number of bins, m. It is recognized, however, that this scaling is 
arbitrary and that numerical values between zero and one have no physical meaning. 

5.2 Extension to Multivariate Analysis and Other General Information Theories 
The framework developed by collecting uncertainty distributions in the columns of an 

information matrix, and processing it using the SVD, makes it possible to extend the definitions 
(15-18) to multivariate analysis and/or the inclusion of other GIT representations of uncertainty. 
Even though this is still work in progress at Los Alamos National Laboratory, the main steps are 
briefly summarized for completeness. 
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The information matrix is first expanded to include other columns, representing other types 
of uncertainties. Research is on-going to include uncertainty models such as Dempster-Schafer 
belief functions [17], random intervals and sets [18], fuzzy membership functions [25], imprecise 
probabilities [26], all of which play important roles in the kinds of uncertainties often experienced 
in a V&V process. The information matrix is denoted by Hm,N where m is the number of 
discretization bins (number of rows) and N is the number of distributions (number of columns): 
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The column {hi,j, i=1…m} represents the jth uncertainty distribution of a response feature y. 
The matrix may collect uncertainty distributions expressed with different theories for a single 
feature; or distributions expressed with the same theory for different features; or a combination 
of the previous two. Mixing different uncertainty representations and features is possible here 
because the SVD provides an automatic normalization. Consequently, the decomposition does 
not suffer from the adverse effects of ill-conditioning that could result from collecting information 
about mathematically different theories or physically different features. 

The second step is, as before, to perform the SVD of the information matrix: 
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where σ1, σ2, …, σN are the N singular values that characterize the amount of uncertainty and 
consistency between distributions. The third step is the calculation of the TU metric, defined as: 
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where hmax,j denotes the maximum value of the jth column, that is, hmax,j = max{hi,j, i=1…m}. The 
definition (21) produces values scaled between zero and an upper bound that only depends on 
the dimensions of the information matrix: 

( )1mNTU0 −≤≤  (22)

As mentioned previously, normalizing TU values by the upper bound N(m-1) provides 
positive numbers between zero and one and eliminates dependency on the size of Hm,N. Future 
work will investigate this approach to estimate total uncertainty in the context of the GIT. 

5.3 TU Metric for Interval-valued Uncertainty 
Following the same procedure outlined in equations (15-18), a definition of the TU metric is 

proposed in the case where multivariate uncertainty is represented by intervals with crisp end-
points. It is assumed that N response features, denoted by yi,j for j=1…N, are analyzed. 

For the crushable foam impact discussed in Section 4, two response features (N = 2) are 
considered: yi,1 is the Peak Acceleration (PAC) and yi,2 is the Time-of-arrival (TOA). What 
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motivates the development of a TU metric in the case of an interval-valued representation of 
uncertainty is that ranges of PAC and TOA features are obtained during the robustness and 
opportunity analyses. A range is an interval [ymin,j;ymax,j]. The minimum bound, ymin,j, is estimated 
by solving a minimization problem given bounds within which the input parameters vary. 
Likewise, the maximum bound, ymax,j, is estimated by solving a maximization problem given 
bounds for the input parameters. The estimates of ymin,j and ymax,j can alternatively be estimated 
from a Monte Carlo simulation if probability distributions were available to characterize the input 
uncertainty. At any horizon-of-uncertainty α, the two optimization problems provide a rigorous 
propagation of interval-valued uncertainty from inputs to output responses of the simulation. 

Because the only information available is the range [ymin,j;ymax,j] for each feature of interest, 
the information matrix becomes a two-row, N-column matrix: 
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The information matrix H2,N is factorized using the SVD in equation (16) and TU is defined as: 
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where values are bounded between TU = 0 (case of absolute certainty) and TU = N (case of 
complete uncertainty). Note that the value TU = 0 is obtained if and only if the lower and upper 
bounds of each feature are equal, that is, ymin,j = ymax,j for j=1…N. It means that the analysis of 
the numerical simulation is deterministic and the intervals of uncertainty collapse down to a 
single point, which is consistent with absolute certainty. 

For the crushable foam impact discussed in Section 4 where yi,1 is the peak acceleration 
and yi,2 is the time-of-arrival, equation (24) becomes: 
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The calculations of confidence in prediction in Section 7 are based on the TU metric (25) where 
the two features of the crushable foam impact simulations are the PAC and TOA. 

6. Foundations of Confidence in Prediction 
We have argued that three quantities are central to the discussion of science-based 

prediction credibility: fidelity-to-data of the family of models, RMax; robustness-to-uncertainty, α*; 
and looseness in prediction, or range of predictions, λY. Our purpose, however, is to ultimately 
estimate confidence in predicting behavior that may or may not have already been observed. In 
this Section, a connection is established between looseness λY and confidence CF using the 
total uncertainty metric defined in Section 5. The theoretical results of Section 3 are extended 
from (RMax;α*;λY) to the triplet (RMax;α*;CF). Section 7 illustrates the trade-offs between fidelity, 
robustness, and confidence with numerical results from the crushable foam. 

6.1 Confidence in prediction 
The reason why the concept of confidence in prediction is of interest is that it is often central 

to the accreditation or certification of complex engineered systems. Certification is here defined 
as the assessment of the overall system performance and its ability to meet design, safety and 
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other requirements. An example of certification exercise is the mission of stockpile stewardship 
of the Los Alamos National Laboratory that provides an assessment of the performance and 
reliability of the physics package of nuclear weapons. Credibility of the decision-making process 
clearly depends on the levels of scientific rigor and confidence that one places in the evidence 
assembled to support the decisions. Confidence in prediction is especially critical when science-
based simulations, such as provided by the ASC Program at Los Alamos, are developed to 
predict environments or behaviors that may never have been tested experimentally [27]. 

Our discussion of confidence in prediction is largely paraphrases comments made in 
Reference [20] where the authors note that, if predictions are made on the response of a system 
and the level of uncertainty expressed in these predictions are close to the extreme of no 
uncertainty, then credibility in that prediction exists. On the other hand, if the uncertainty is 
closer to the case of maximum uncertainty, then less credibility exists. It is therefore important to 
develop a metric of “credibility” or “confidence” that scales monotonically with the quantified 
level of uncertainty and, in a mathematical sense, measures the degree of closeness. Jane 
Booker and her co-authors also note that: 

“Confidence is a commonly used term whose definitions include words like trust, 
belief, reliance, and certitude. It is the state of feeling sure [28]. Note, however, that 
even the great Greek philosophers were unable to precisely, or mathematically, 
define what is meant by confidence. Outside of the statistical context, there is no 
definition for the mathematical meaning or quantification of confidence.15 Therefore, 
we discourage its use in V&V and uncertainty quantification studies unless defined 
using the statistical definitions. However, we are willing to note that confidence 
seems to have an inverse relationship to uncertainty.” 

The previous discussion gives rise to three basic requirements that a metric developed to 
quantify confidence in prediction, and denoted by the symbol CF here, must satisfy: 

• The confidence in prediction metric, CF, is a positive number. 

• Numerical values must be bounded between a minimum, CF = 0, that expresses a complete 
lack of confidence and a maximum, CF = 1 or CF = +∞, that expresses total confidence. 

• Confidence has an inverse relationship to uncertainty. 

It is noted that the first two requirements are somewhat arbitrary. Others, such as requiring 
that CF varies monotonically or linearly with the level of uncertainty or requiring continuity and 
differentiability, could be added to the list. It is, however, not our intent to propose an axiomatic 
definition for confidence metrics. Instead, the simplest possible expression is defined: 
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15 Also quoted from Reference [20]: “In statistical sciences, confidence has a specific meaning when 
referring to a confidence interval for an unknown parameter. The interpretation of a confidence interval is 
often misused. It refers to a sampling process and the calculation of multiple confidence intervals for 
multiple repeated samples. For example, if one were to take a hundred samples from a population and 
calculate a hundred times the 95% confidence intervals for an unknown parameter, such as the mean, 
then 95 of those confidence intervals would contain the true value of the mean. Another statistically based 
confidence definition is in common use. The so-called confidence level is defined as the complement of a 
significance level in statistical hypothesis testing. The confidence level is (1-α), where α is the significance 
level or the Type I error. The Type I error is a controlled error in statistical inference, it refers to the 
chance (e.g., 5%) that a null hypothesis is rejected when it is true and should not have been rejected.” 
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where TUmax denotes the upper bound of the TU metric, defined by equation (22) in the general 
case. Clearly, the definition satisfies the above three requirements.16 It can also be verified that 
complete lack of confidence leads to the value of CF = 0. Likewise, total confidence corresponds 
to the value of CF = 1. For the interval-valued uncertainty of the crushable foam application, the 
TU metric from equation (25) is used and calculations of CF values are based on: 
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It is emphasized that the definition proposed here of a quantitative metric for confidence in 
prediction is not meant to be final. It is likely to be revised in future work. Nevertheless, the CF 
metric captures in the simplest possible way trends expected to be observed between prediction 
looseness from a family of models, uncertainty of the predictions, and confidence. 

For completeness, other attempts at defining confidence during a V&V process are briefly 
mentioned. In References [29, 30], statistical confidence interval estimation is considered to 
define validation metrics in cases where replicate measurements are performed and multiple 
predictions are obtained from simulation. These metrics remain within the realm of probabilistic 
representation of uncertainty and, therefore, take advantage of the narrow-but-solid foundation 
of confidence in statistical sciences. Another promising approach is the QRC metric developed 
at the Lawrence Livermore National Laboratory [11, 12]. QRC stands for Quantifying Reliability 
at Confidence and it provides a risk-based methodology for analyzing the reliability of complex 
systems and validating predictions against test data.17 By recognizing that a reliability number 
depends on the level of confidence with which the estimate can be obtained, Roger Logan and 
his co-authors implicitly define a framework to explore the trade-offs of the performance-
confidence pair (R;CF), which is not unlike the one proposed here for the triplet (RMax;α*;CF). 

6.2 Relationship Between Looseness λY and Confidence CF 
The relationship between looseness λY and confidence CF is now investigated in the context 

of the interval-valued uncertainty model discussed in Section 5.3. To extend the Theorems of 
Section 3 from (RMax;α*;λY) to the triplet (RMax;α*;CF), one must understand how the uncertainty 
and confidence metrics TU and CF vary when looseness λY is increased or decreased. Because 
the definition of confidence in equation (26) depends on the TU metric, derivations are made 
specific to the interval-valued representation of uncertainty proposed to analyze the crushable 
foam application. 

The main result is intuitive: An increase in looseness λY, that is, less consistent predictions 
of a family of models or less consistency in a body of evidence collected to support a decision, 
translates into more uncertainty (TU increases) and less confidence (CF decreases). The main 

                                                           
16 Definition (26) is based on the mathematical relationship y=1-x to express that the quantities x and y 
are inversely related. Alternatives include y=1/x, y=e-x, etc. It is argued that such choice is somewhat 
arbitrary. It also depends on the range of numerical values, CF ∈ [0;1] or CF ∈ [0;+∞]. Our preference, at 
this point, goes to a CF metric that varies between zero and one. This is to prevent translation of the value 
“CF=+∞” into a statement of “infinite confidence”. Although appealing in the context of common language, 
it is our opinion that there is no such thing as a scientific statement or mathematical theory in which we 
can place infinite confidence. 
17 Reliability is defined in a broad sense. In the context of conventional reliability analysis, it is obtained as 
R = 1–PF, or the probability of not obtaining failure. In the context of test-analysis correlation for V&V, it is 
the result of statistical testing that assesses the probability that measurements and predictions come from 
the same parent population. 
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contribution of this Section is a formal proof in the particular case of the interval-valued model of 
uncertainty proposed by equations (23-24). 

Starting from the definition (23), the information matrix H2,2 that collects uncertainty about 
predictions made for two features yi,1 and yi,2 is written as: 
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where uncertainty about the true-but-unknown value of the jth feature, j = 1 or 2, is represented 
not by a distribution, but an interval [ymin,j;ymax,j]. The analysis can be performed for any feature 
of the response although peak acceleration and time-of-arrival are considered for the crushable 
foam application. In addition, the symbol λY,j denotes the prediction looseness of the jth feature: 

( )jmin,jmax,jY, yyλ −=  (29)

The proof starts by calculating the singular values of matrix H2,2. By definition, the singular 
values, σj, are equal to the eigen-values of the squared matrix: 
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The eigen-values of matrix (30) are calculated by solving the second-order equation: 
( ) 0cabbaσσ 22 =−++−  (32)

that admits two solutions: 
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Finally, it can be verified that the sum of squares of the two singular values is equal to: 
2222

2
2
1 c2baσσ ++=+  (34)

With these intermediate results established, the sensitivity of the TU metric to changes in 
the looseness λY,j can be studied. A positive partial derivative of TU with respect to λY,j indicates 
that TU and λY,j vary sympathetically. A negative partial derivative indicates that TU and λY,j vary 
antagonistically. Extending the results to the confidence metric is trivial since CF = 1-(TU/TUmax). 

The TU metric derived in equation (25) for the crushable foam application depends on the 
sum of squares of the two singular values. Substituting equation (34) leads to: 
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Partial derivatives with respect to λY,j are calculated, without any loss of generality, by assuming 
that the upper bounds ymax,j do not vary and substituting (ymax,j- λY,j) for ymin,j. It results that: 
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The two features of interest are yi,1 = PACi for the peak acceleration and yi,2 = TOAi for the time-
of-arrival. Their values are positive numbers, and it follows that the sign of the partial derivatives 
shown in equation (36) is always positive: 
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where the subscript ( )j identifying the feature is dropped for simplicity. It follows that: 
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As suspected, confidence in prediction CF is decreased when the range of predictions made 
by a family of models, or the lack of consistency of a body of evidence, increases. The proof has 
been proposed for the information matrix H2,2 defined by equation (28), and it is easy to verify 
that it can be extended to any information matrix H2,N such as defined in equation (23).18 It has 
not been verified that this result can be extended to cases such as the possibility-probability 
model of equation (15) or the other GIT representations of equation (19). 

6.3 Discussing the “Myth” of Predictive Modeling 
The Theorems of Section 3 have established that an increase in robustness-to-uncertainty 

comes at the cost of relaxing the aspiration of prediction accuracy or, equivalently, increasing 
the maximum authorized error RMax. Likewise, prediction looseness increases with robustness. 
These results are expressed compactly by the following two inequalities: 
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Extension to confidence in predictions is straightforward by combining equations (38) and (39): 
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The final trade-offs between aspiration of fidelity-to-data RMax, robustness-to-uncertainty α*, and 
confidence in prediction CF, are expressed by the following two inequalities: 
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In conclusion, it is not possible to improve the fidelity-to-data and, simultaneously, make the 
family of models more robust to epistemic uncertainty. Likewise, it is not possible to improve 
robustness-to-uncertainty and, simultaneously, increase confidence that the models will predict 

                                                           
18 The argumentation that the proof given using matrix H2,N is valid for any other matrix H2,N relies on two 
technicalities. The main reason is that a two-row, N-column matrix such as H2,N admits only two non-zero 
singular values, no matter how many columns N ≥ 2. Fundamentally, the case of matrix H2,N is therefore 
no different, with the exception that derivations such as equation (33) will change. A second technicality is 
to study the sign of expressions given in equation (36). A negative sign could be obtained if the response 
features take negative values, which then results in sympathetic variations of the pair (CF;λY). In the event 
of negative feature values, entries in matrix H2,N can be altered by shifting them to guarantee that they are 
positive. Shifting the values is not a concern, as long as minima ymin,j and maxima ymax,j are shifted by the 
same amounts, because what matters are the ranges λY,j = (ymax,j–ymin,j), not the values themselves. 
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environments or behaviors that have not been observed experimentally. A word of caution is 
necessary to remind the reader that the proof has only been provided in the special case of a 
two-feature prediction with interval-valued representation of uncertainty. Note, however, that no 
restrictive assumption is made about the models of input uncertainty, as long as they define a 
family of convex nested sets when the horizon-of-uncertainty parameter, α, increases. 

It is expected that, in the case of a general information matrix Hm,N defined in equation (19), 
the existence of an antagonism between robustness, α*, and confidence, CF, will depend on the 
nature and representation of the evidence collected in matrix Hm,N. Special cases may exist 
where robustness-to-uncertainty and confidence in prediction turn out to be sympathetic. 

Our interpretation of these results is not that achieving science-based predictive credibility 
is a myth. Clearly, this work suggests that it is impossible to find models that match the available 
test data “perfectly” while being “highly” robust to the lack-of-knowledge and providing “infinite” 
confidence in their forecasting ability or predictive power. The good news is that a framework 
has been outlined to study which requirements of fidelity, robustness, and confidence are 
attainable given the current limitation of our knowledge, and which combinations of (RMax;α*;CF) 
are not feasible. Understanding that science-based prediction has limits should not be pretext 
for not developing much needed predictive modeling tools. Instead, understanding the trade-offs 
of (RMax;α*;CF) should be the mechanism through which prediction credibility is established. 

7. An Application to Quantifying Confidence in Prediction 
In this Section, the antagonism between robustness-to-uncertainty, α*, and confidence in 

prediction, CF, is illustrated for the crushable foam impact problem. Results shown here apply to 
the prediction of peak acceleration PAC and time-of-arrival TOA features. 

The main source of lack-of-knowledge is the behavior of the crushable foam material. It is 
modeled using a family of convex nested sets {Uα, α>0} that become increasingly inclusive of 
strain-stress curves as the horizon-of-uncertainty, α, increases. Members of the sets Uα are the 
sub-models of internal force described in equations (9-11) and needed to solve the equation of 
motion (8). Section 4.2 describes the models of input uncertainty and Section 4.5 discusses how 
they are propagated through the simulation. 

Output uncertainty, that is, uncertainty about the values of PAC and TOA, is represented by 
an interval [ymin;ymax] for each feature, as explained in Section 5.3. Intervals are collected in an 
information matrix and the total uncertainty framework is implemented according to the steps 
(23-25). Confidence in prediction is quantified using the definition (27). 

7.1 Looseness vs. Robustness for the Crushable Foam Modeling 
First, the relationship between looseness in prediction, λY = ymax – ymin, and robustness-to-

uncertainty, α*, is illustrated. Theorem 2 states that looseness increases with robustness. This is 
verified in Figure 14 that pictures looseness as a function of robustness. Each curve represents 
one of the four configurations of the system tested experimentally. In Figure 14-a, the looseness 
of PAC prediction increases with robustness, especially for Tests 1 and 4. A similar trend can be 
observed for the TOA feature in Figure 14-b. This expresses that the models included in a given 
family Uα, up to the robustness level α* and aspiration of fidelity-to-data RMax, make increasingly 
less consistent predictions. Discontinuities are seen, but each curve is monotonically increasing 
because the domains Uα are nested within one another. 
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(14-a) PAC prediction looseness versus modeling lack-of-knowledge. 

 
(14-b) TOA prediction looseness versus modeling lack-of-knowledge. 

Figure 14. Prediction looseness of the four configurations of the system. 
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7.2 Confidence vs. Robustness for the Crushable Foam Modeling 
Figure 15 translates the information conveyed by Figure 14 into an estimate of confidence 

in prediction. The ranges of PAC and TOA predictions, made by all numerical simulations based 
on sub-models that belong to Uα, are combined in the information matrix H2,2 of equation (28). 
Total uncertainty, TU, and confidence, CF, are then quantified according to equations (25) and 
(27), respectively. As before, each curve shows results for one of the tested configurations. The 
antagonistic nature of robustness and confidence can be observed from Figure 15. 

It is our opinion that such information is of great value to investigate the strengths and 
weaknesses of numerical simulations. For example, if one is asked to meet the requirement of 
CF = 60% confidence when predicting PAC and TOA for all four configurations, Figure 15 shows 
that no more than α = 0.3 uncertainty can be tolerated. If evidence is available to suggest that 
our lack-of-knowledge is greater than this level of uncertainty, then the confidence requirement 
cannot be met. Corrective actions can be suggested to reduce the modeling uncertainty, such 
as performing validation experiments, collecting more data, or re-thinking some of the modeling 
assumptions. 

 
Figure 15. Confidence in prediction, CF, for the four configurations of the system. 

The reader will understand that the curves shown in Figure 15 are projections of the three-
dimensional triplet (RMax;α*;CF) in the plane defined by confidence and robustness. To each 
point shown on the curves of Figure 15 corresponds a range of prediction accuracy, from best 
attainable to worst possible. The domains of feasible requirements defined by the triplets of 
values (RMax;α*;CF) are examined next. 
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(16-a) Feasible requirements for Test 1, low drop height and thin foam pad. 

 
(16-b) Feasible requirements for Test 2, low drop height and thick foam pad. 

Figure 16. Feasible requirements (RMax;α*;CF) for the four configurations of the system. 
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(16-c) Feasible requirements for Test 3, high drop height and thin foam pad. 

 
(16-d) Feasible requirements for Test 4, high drop height and thick foam pad. 

Figure 16. Feasible requirements (RMax;α*;CF) for the four configurations of the system. 
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(17-a) Confidence CF at α* = 0.1. (17-b) Confidence CF at α* = 0.3. 

  
(17-c) Confidence CF at α* = 0.6. (17-d) Confidence CF at α* = 0.8. 

  
(17-e) Confidence CF at α* = 0.9. (17-f) Confidence CF at α* = 1.0. 

Figure 17. Confidence-vs.-robustness surfaces extrapolated throughout the validation domain. 
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7.3 What Constitute Feasible Requirements for the Crushable Foam Modeling? 
Figures 16 show the three-dimensional domain defined by all combinations of fidelity, 

robustness, and confidence (RMax;α*;CF) requirements. To provide an overall assessment of 
prediction accuracy, test-analysis correlation R values are defined by the Mahalanobis distance 
of equation (13). The total uncertainty TU metric, normalized between zero and one, is shown 
instead of the confidence CF metric. Scaling of axis values is kept constant to make it easier to 
compare across the four figures.19 The ranges of prediction accuracy, from best attainable to 
worst possible, are illustrated by the vertical lines that connect within each horizontal plane 
(α*;CF) the opportunity curve (or best accuracy) to the robustness curve (or worst accuracy). 
The discontinuous appearance of these “tornado-looking” plots is an artifact of using only ten 
discrete horizon-of-uncertainty values, α. 

Ideally, we would like the family of models to provide low prediction error (or R~0), high 
robustness (or α*~1), and high confidence in prediction (or TU~0), which is the region near the 
lower left corner of each cube in Figures 16. For Tests 1 and 4, Figures 16-a and 16-d show that 
the family of models can satisfy quite stringent requirements (RMax;α*;CF), up to the level of 
robustness of α* = 0.8, approximately. Predictions made for Test 3, on the other hand, are 
relatively insensitive to the modeling uncertainty. The only noticeable trend of Figure 16-c is that 
confidence decreases with robustness, which illustrates the Theorem 2 and equation (41). The 
family of models appears very appropriate to predict Test 2. This simple example illustrates the 
methodology proposed to study the “myth” of science-based predictive modeling. 

7.4 Extrapolation of Confidence vs. Robustness Throughout the Validation Domain 
Finally, Figure 17 extrapolates the confidence-versus-robustness curves throughout the 

validation domain, that is, to all settings of drop height and foam thickness values that have not 
been tested experimentally. The procedure is similar to the extrapolation of robustness-versus-
fidelity curves of Figures 12 and 13 in Section 4.5. The overall trend, that increasing robustness 
decreases confidence throughout the validation domain, is in agreement with the theory and 
sensitivity results shown in equation (41). 

8. Thoughts About the Department of Energy’s ASC Program 
In this Section, the theory developed is discussed in the context of the Department of 

Energy’s Advanced Simulation and Computing (ASC) Program. ASC has been tasked with the 
development of massively parallel computing platforms and high-fidelity, physics-based codes 
for weapon applications at Los Alamos and other national laboratories. 

The rationale for investing in this technology is that, in the absence of full-scale testing, 
predictions made by ASC codes will eventually become more credible than predictions 
assembled by analyzing legacy codes and eliciting expert opinion. The notions of “credibility”, 
“confidence”, and “predictive capability” are central to the mission of ASC, as indicated by these 
quotes extracted from several documents: 

“The development of three-dimensional, high-fidelity applications for execution on 
massively parallel computers is required to properly steward the enduring stockpile 
and maintain a credible deterrent.” From Reference [31]. 

                                                           
19 The fidelity-to-data values shown on the X-axis are expressed as percentages of the maximum 
prediction error obtained using the Mahalanobis metric for Test 1. The values of the X-axis have therefore 
no physical meaning. The robustness values shown on the Y-axis, and likewise the total uncertainty 
values shown on the Z-axis, are scaled between zero and one. 
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“Advanced physics and material models, and the coupling of such models to these 
applications, are required to create a predictive capability for the modeling of 
nuclear weapons as our stockpile continues to age.” From Reference [31]. 

 “An essential task of the weapons program has always been to determine, with 
confidence, the performance of stockpile weapons. Today we face the additional 
challenge of accomplishing this task without nuclear testing.” From Reference [32]. 

One important characteristic of legacy codes is that they have been calibrated to match the 
observations collected from a large number of nuclear and non-nuclear diagnostics and 
experiments. Theorem 1 suggests that the price to pay for increased fidelity is vulnerability to 
epistemic uncertainty. Examples of uncertainty include the value of discretization parameters, 
material properties, nuclear properties, numerical settings that control the solution algorithms, 
and the degree to which different physics are coupled. 

High-fidelity codes, on the other hand, are based on first-principle physics. The basic idea is 
to better understand the physics, materials, and environments; more accurately describe the 
mechanical, thermal, and hydro-dynamical states; and couple different physics such as phase 
transformation, fission, radiation, and thermonuclear burn. This approach aims at substituting 
first-principle physics to simplifying assumptions, hence, pushing back the boundaries of our 
ignorance. In doing so, what is gained is robustness. Because ASC codes are general-purpose, 
as opposed to specific to a system or series of tests, and because they can simulate a wide 
range of physical behaviors, they are made less vulnerable to what may still be unknown about 
the fundamental physics. Theorem 1 suggests that the price to pay for increased robustness is 
a lesser ability to match the available test data. In addition, Theorem 2 and its extension to 
confidence suggest that a deteriorated ability to predict with confidence should be expected. 

 
Figure 18. Conceptual illustration of a fidelity-robustness-confidence curves (RMax;α*;CF). 

This is conceptually illustrated in Figure 18. The trade-offs between fidelity and robustness 
are shown on the left; the trade-offs between robustness and confidence are shown on the right. 
Performance of legacy codes is illustrated by the red dashed lines; performance of ASC codes 
is illustrated by the blue solid lines. It is emphasized that the figures are notional only. The 
reader will understand that what should really be compared are the triplets (RMax;α*;CF) for each 
family of codes, projected here in two dimensions for simplicity. 

Figure 18 suggests that switching from one family of codes to the next, that is, moving from 
points A to points B, tends to initially degrade fidelity and confidence. However, moving to the 
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points B means that trade-offs of fidelity-robustness-confidence requirements have changed. 
They no longer are dictated by the red dashed curves; the trade-offs move instead along the 
blue solid curves. After having learned the new tools and perfected the modeling rules, 
confidence is gained and better matches to test data are obtained. Although the transition may, 
at first, appear to be a poor decision, the enhanced robustness of the new family of codes 
should eventually yield better fidelity-to-data and more confidence in prediction. 

The message should not be that, after over a decade of investment by Congress and the 
Department of Energy, the capability to match past experiments and predict with confidence is 
deteriorating. Indeed, lesser fidelity-to-data and lesser confidence are likely to be observed, at 
least initially. However, what matters to demonstrate prediction credibility is not the starting point 
on a fidelity-robustness-confidence curve (RMax;α*;CF). What ultimately matters is the overall 
shape of the curve that defines constraints between RMax, α*, and CF. Such message may be 
difficult to communicate to high-level managers, but our opinion is that the role of scientists is to 
educate them to the sometimes harsh reality of predictive modeling. 

9. Conclusion 
This work studies the relationship between several aspects of prediction accuracy. The 

main conclusion is that, in assessing the prediction accuracy of numerical models, one should 
never focus on a single aspect only. Instead, the trade-offs between fidelity-to-data, robustness-
to-uncertainty, and confidence in prediction should be explored. One consequence that cannot 
be emphasized enough is that the calibration of numerical models—which focuses solely on the 
fidelity-to-data aspect—is not a sound strategy for selecting models capable of making accurate 
predictions. Calibration leaves models vulnerable to modeling uncertainty. 

It is further established that predictive models selected for their robustness-to-uncertainty 
tend to make inconsistent predictions, hence, decreasing confidence in prediction. A practical 
definition of confidence is proposed using the concept of total uncertainty. Total uncertainty is a 
general framework to aggregate different types of uncertainty and their mathematical modeling. 
Although preliminary, this definition of confidence is useful to illustrate the antagonism between 
prediction accuracy, robustness to modeling assumptions, and confidence that one places in the 
ability of a family of models to forecast environments that have not been tested experimentally. 

Disclaimer and Acknowledgements 
Opinions expressed in this publication are the author’s own. They do not necessarily reflect 

official policy of the U.S. Department of Energy, National Nuclear Security Administration, Los 
Alamos National Laboratory, or the Advanced Simulation and Computing (ASC) Program. The 
support of the ASC Program for engineering analysis verification and validation at Los Alamos is 
acknowledged. The author is grateful to Mark Anderson, ESA-WR, Jane Booker, ESA-WR, and 
Scott Doebling, ESA-WR, for their continuing support. 

References 
[1] Ben-Haim, Y., Hemez, F.M., “Robustness-to-uncertainty, Fidelity-to-data, and Prediction 

Looseness of Models,” 22nd SEM International Modal Analysis Conference, January 26-29, 
2004, Dearborn, Michigan. 

[2] Doebling, S.W., “Structural Dynamics Model Validation: Pushing the Envelope,” First 
International Conference on Structural Dynamics Modeling: Test, Analysis, Correlation and 
Validation, Madeira Island, Portugal, June 3-5, 2002. 



Foundations ’04 Workshop for Verification, Validation, and Accreditation (VV&A) in the 21st Century 
October 13-15, 2004, Arizona State University, Tempe, Arizona 

 

 
Approved for unlimited, public release on October 1st, 2004                                            LA-UR-04-6829, Unclassified 

40

[3] Hemez, F.M., Ben-Haim, Y., “The Good, the Bad, and the Ugly of Predictive Science,” 4th 
International Conference on Sensitivity Analysis of Model Output, Santa Fe, New Mexico, 
March 8-11, 2004. 

[4] Ben-Haim, Y., Hemez, F.M., “Robustness, Fidelity, and Prediction-looseness of Models,” 7th 
Biennial Conference on Engineering Systems Design and Analysis, Manchester, United 
Kingdom, July 19-22, 2004. 

[5] Ben-Haim, Y., Hemez, F.M., “Robustness, Fidelity, and Prediction-looseness of Models,” 
Physical Transactions of the Royal Society, April 2004, in preparation. 

[6] Mottershead, J.E., Friswell, M.I., “Model Updating in Structural Dynamics: A Survey,” 
Journal of Sound and Vibration, Vol. 162, No. 2, 1993, pp. 347-375. 

[7] Hemez, F.M., Doebling, S.W., “Inversion of Structural Dynamics Simulations: State-of-the-
art and Orientations of the Research,” 25th International Conference on Noise and Vibration 
Engineering, Leuven, Belgium, September 13-15, 2000, pp. 403-413. 

[8] Ben-Haim, Y., “Robust Rationality and Decisions Under Severe Uncertainty,” Journal of the 
Franklin Institute, Vol. 337, 2000, pp. 171-199. 

[9] Ben-Haim, Y., Information-Gap Decision Theory: Decisions Under Severe Uncertainty, 
Academic Press, 2001. 

[10] Sharp, D.H., Wood-Schultz, M.M., “QMU and Nuclear Weapons Certification: What’s Under 
the Hood?,” Los Alamos Science, Number 28, June 2003, pp. 47-53. (Also available as 
report LA-UR-03-5704, Los Alamos National Laboratory, Los Alamos, New Mexico.) 

[11] Logan, R.W., Nitta, C.K., “Verification & Validation Methodology and Quantitative Reliability 
at Confidence (QRC): Basis for an Investment Strategy”, Report UCRL-ID-150874, 
Lawrence Livermore National Laboratory, Livermore, California, November 2002. 

[12] Nitta, C.K., Logan, R.W., “Qualitative and Quantitative Linkages from V&V to Adequacy, 
Certification, Risk, and Benefit/Cost Ratio,” Foundations ’04 Workshop for Verification, 
Validation, and Accreditation in the 21st Century, Arizona State University, Tempe, Arizona, 
October 13-15, 2004. (Also available as report UCRL-TR-205809, Lawrence Livermore 
National Laboratory, Livermore, California.) 

[13] Elishakoff, I., Safety Factors and Reliability: Friends or Foes?, Kluwer Academic 
Publishers, 2004. 

[14] Hemez, F.M., Wilson, A.C., Doebling, S.W., “Design of Computer Experiments for 
Improving an Impact Test Simulation,” 19th SEM International Modal Analysis Conference, 
Kissimmee, Florida, February 5-8, 2001, pp. 977-985. 

[15] Hemez, F.M., Ben-Haim, Y., “Info-gap Robustness for the Correlation of Tests and 
Simulations of a Non-linear Transient,” Mechanical Systems and Signal Processing, Vol. 
18, 2004, pp. 1443-1467. 

[16] Kolmogorov, A.N., Foundations of the Theory of Probability, Chelsea, New York, 1956. 

[17] Dempster, A.P., “Upper and Lower Probabilities Generated by a Random Interval,” Annals 
of Mathematical Statistics, Volume 39, Number 3, 1968, pp. 957-966. 

[18] Joslyn, C., “Aggregation and Completion of Random Sets with Distributional Fuzzy 
Measures,” International Journal of Uncertainty, Fuzziness, and Knowledge-Based 
Systems, Volume 4, Number 4, 1996, pp. 307-329. 



Foundations ’04 Workshop for Verification, Validation, and Accreditation (VV&A) in the 21st Century 
October 13-15, 2004, Arizona State University, Tempe, Arizona 

 

 
Approved for unlimited, public release on October 1st, 2004                                            LA-UR-04-6829, Unclassified 

41

[19] Anderson, M.C., Booker, J., Hemez, F.M., Joslyn, C., Reardon, B., Ross, T., “Quantifying 
Total Uncertainty in a Validation Assessment Using Different Mathematical Theories,” 14th 
Biennial Nuclear Explosives Design Physics Conference, Los Alamos National Laboratory, 
Los Alamos, New Mexico, October 20-24, 2003. (Also available as report LA-UR-03-9001, 
Los Alamos National Laboratory, Los Alamos, New Mexico.) 

[20] Booker, J.M., Ross, T.J., Rutherford, A.C., Reardon, B.J., Hemez, F.M., Anderson, M.C., 
Doebling, S.W., Joslyn, C.A., “An Engineering Perspective on Uncertainty Quantification for 
Validation, Reliability, and Certification,” Foundations ’04 Workshop for Verification, 
Validation, and Accreditation in the 21st Century, Arizona State University, Tempe, Arizona, 
October 13-15, 2004. 

[21] Klir, G., Wierman, M., Uncertainty-based Information: Elements of Generalized 
Information Theory, Physica-Verlag/Springer-Verlag, 1999. 

[22] Zadeh, L.A., “Towards a Unified Theory of Uncertainty,” International Conference on 
Information Processing and Management of Uncertainty, Perugia, Italy, July 4-7, 2004. 

[23] Klema, V.C., Laub, A.J., “The Singular Value Decomposition: Its Computation and Some 
Applications,” IEEE Transactions on Automatic Control, Volume AC-25, 1980, pp. 164-176. 

[24] Lenaerts, V., Kerschen, G., Golinval, J.-C., “Proper Orthogonal Decomposition for Model 
Updating of Non-linear Mechanical Systems,” Mechanical Systems and Signal Processing, 
Volume 15, 2001, pp. 31-43. 

[25] Klir, G.J., Yuan, B., Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice 
Hall, 1995. 

[26] Walley, P, Statistical Reasoning With Imprecise Probabilities, Chapman and Hall, 1990. 

[27] Doebling, S.W., “Overview of Los Alamos National Laboratory Simulation Validation 
Program,” ASC Alliance/Laboratory Verification & Validation Workshop, La Jolla, California, 
July 13-14, 2004. 

[28] Gove, P.B., Editor, Webster’s Third New International Dictionary, Merriam-Webster Inc., 
1986. 

[29] Trucano, T.G., Piltch, M., Oberkampf, W.L., “General Concepts for Experimental Validation 
of ASCI Code Applications,” Report SAND-2002-0341, Sandia National Laboratories, 
Albuquerque, New Mexico, 2002. 

[30] Schwer, L., “Guide for the Verification and Validation of Computational Solid Mechanics,” 
Report 2004-03-22, ASME PTC-60 Committee on Verification and Validation in 
Computational Solid Mechanics, American Society of Mechanical Engineers, August 2004. 

[31] ASCI Technology Prospectus, Simulation and Computational Science, Publication 
DOE/DP/ASC-ATP-001, Defense Programs, National Nuclear Security Administration, 
Department of Energy, Washington, D.C., July 2001. 

[32] Benjamin, R.F., “Validation Experiments in Support of the Nuclear Weapons Stockpile,” 
Nuclear Weapons Journal, Winter 2004, pp. 16-21. (Also available as report LALP-04-013, 
Los Alamos National Laboratory, Los Alamos, New Mexico.) 

 


	laur #: 04-6829
	title: THE MYTH OF SCIENCE-BASED PREDICTIVE
MODELING (U)
	authors: François M. Hemez, Los Alamos National Laboratory, ESA-WR
	submitted to: Foundations ’04 Workshop for Verification, Validation, and Accreditation (VV&A) in the 21st Century, October 13-15, 2004,
Arizona State University, Tempe, Arizona
	menu warning: 
	tab to print: 
	save: 
	print: 
	RESET: 


