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HIGH-TEMPERATURE CONSTITUTIVE MODELS FOR TAYLOR 
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Abstract. Material scientists commonly use Taylor anvil impact experiments to calibrate 
constitutive and equation-of-state models that include plasticity, high strain-rate and 
temperature dependency. The Taylor anvil experiment consists of impacting a sample of 
material against a rigid wall and measuring its deformed profile. The measured profiles are 
compared to numerical predictions and parameters of the material model are calibrated to 
improve the predictive accuracy. The application for which constitutive models, among other 
things, must be validated is the containment of hazardous residues. Such residues result from 
hydrodynamic experiments during which materials are compressed and radio-graphed with 
multiple-axis, high-energy X-rays. The discussion presented here overviews the successive 
steps of the validation process for a Zerilli-Amstrong plasticity model. A suite of validation 
experiments is designed, starting with static testing and progressing to Hopkinson bar tests 
and Taylor impact tests. It is shown how uncertainty is propagated through the forward and 
inverse calculations. Based on test-analysis correlation, statistical metamodels are created to 
estimate the predictive accuracy of the plasticity model in regions of the operational space 
where testing is not possible. The operational space is defined in terms of varying strain-rates 
and temperatures. The result of the predictive accuracy assessment is that the fidelity of a 
numerical simulation can be estimated, even before performing the calculation itself. The 
suite of validation tools helps analysts decide whether their models meet the accuracy 
requirement for a particular application. 

Approved for unlimited, public release. LA-UR-02-6646. Unclassified. 
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1. INTRODUCTION 

Material scientists commonly use an experiment known as the Taylor anvil impact to 
develop constitutive and equation-of-state models. Because of the regimes for which they are 
developed, such models generally include plasticity, high strain-rate and temperature 
dependency. Examples used in engineering mechanics include the Johnson-Cook1 and Zerilli-
Amstrong2 models. The Taylor anvil experiment consists of impacting a sample of material 
against a rigid wall and measuring its deformed profile. The measured profiles are compared 
to numerical predictions and parameters of the constitutive equations can be calibrated to 
improve the model's predictive accuracy. 

The application we are interested in involves the containment of hazardous residues inside 
pressure vessels. Such residues are the byproduct of hydrodynamic tests during which 
materials are radio-graphed with multiple-axis, high-energy X-rays. During the tests, it may 
happen that small fragments impact and penetrate the vessel's wall. Pre-shot qualification 
requires that each test be numerically simulated to assess the potentially hazardous situations 
and the margin of safety. A pre-requisite to simulation-based qualification is the assessment 
of predictive accuracy of the numerical models. This publication does not address the 
development of constitutive models per say. Instead, the discussion illustrates the successive 
steps of the validation process. A suite of validation experiments is designed, starting with 
Hopkinson bar testing and proceeding with the higher strain-rate Taylor tests, to assess the 
predictive accuracy of material models over different regions of the operational space. The 
discussion overviews the technology developed and applied for assessing the predictive 
accuracy of material models. It includes sampling, design of experiments, metamodeling, 
Bayesian calibration and non-probabilistic uncertainty quantification. 

Based on test-analysis correlation and statistical metamodeling, the predictive accuracy of 
a constitutive model is assessed in regions of the operational space where testing is not 
possible. The significance of this assessment is that the fidelity of a numerical simulation can 
be estimated, even before performing the calculation itself. The suite of tools developed for 
model validation helps analysts decide whether their models meet the accuracy requirement 
for a particular application. 

2. MOTIVATION 

The application we are interested in is the pre-testing qualification of containment vessels 
for the radiography of hydrodynamic experiments. A hydrodynamic experiment consists of 
compressing materials to the point where they “flow” and must be characterized by a 
distribution of density and pressure instead of strength. The containment vessels are also 
designed to facilitate the radiography of the experiment with multiple-axis, high-energy X-
rays. The vessels, pictured in Figure 1, are 6 feet (1.83 m) in diameter with 2-inch (50.8 mm) 
thick walls and manufactured out of high-strength steel known as HSLA-100. 
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Because of the potentially toxic nature of the materials involved, each shot must be 
qualified before a review board will allow the testing team to proceed with the physical 
experiment. The difficulty, of course, is that experimental measurements are available only 
after the physical experiment has been performed. Measurements cannot be used for assessing 
the safety margin and qualification; they can only be used after the fact to verify that the 
simulations were correct. Qualification must therefore be assessed on the basis of simulations 
only, which implies that the predictive accuracy of the models going into the code must be 
established before the experiment can be performed. 

  
Figure 1: Photograph of a containment vessel (left) and illustration of the finite element mesh (right). 

Two families of models are developed to simulate the response of the pressure vessels to 
the impulse and estimate the safety margin. They are referred to as the “Low Fidelity” (LoFi) 
and “High Fidelity” (HiFi) models. The engineering LoFi models count about 91,000 finite 
elements and 600 contact surfaces, which results into more than one million equations. The 
analysis software is HKS/AbaqusTM, a general-purpose finite element package that can handle 
arbitrary non-linearity, impact and contact dynamics through its explicit integration schemes.3 

The engineering models are complemented with HiFi models analyzed with ParaDyn, a 
parallel finite element package developed by the Lawrence Livermore National Laboratory.4 
High-fidelity models make it possible to study the leak path likely to develop through the 
bolted connection between the lids that close openings and the vessel’s wall. The 
computational mesh developed to study this critical area is illustrated in Figure 1. The HiFi 
models result into problems that are one order of magnitude larger than the LoFi models. 
They are analyzed on hundreds of processors of massively parallel machines such as the Los 
Alamos BlueMountain and ASCI-Q super-computers, both capable of achieving several 
TERAOPS of computational power. (One TERAOPS is defined as 10+12 floating-point 
multiplications per second.) Figure 2 shows four snapshots of the deformation profile of a 
quarter-symmetry vessel simulated with HKS/AbaqusTM. 
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Figure 2: Simulated deformation profiles at four instants after impulse (0.5 ms, 0.9 ms, 1.3 ms, 2.0 ms). 

Figure 3 illustrates the agreement obtained between a series of numerical simulations and 
measurements performed during a hydrodynamic experiment. The visual agreement between 
the curves is a clear indication of the excellent predictive accuracy of the simulation. Note 
that predicted and measured responses start to show significant disagreement after 4 ms, when 
only the first two milliseconds of response in fact matter to estimate the safety margin. 
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Figure 3: Predicted and measured signals. (Red and blue lines: Simulations. Pink line: Measurement.) 

Obviously, reaching such good agreement is only possible to the extent where validated 
models have been implemented. This publication focuses on the validation of the material’s 
constitutive model. The other components of the Verification and Validation (V&V)—such as 
verifying the contact algorithm; verifying the numerical solvers; making sure that the grid size 
provides a converged solution; and selecting an appropriate time resolution—are addressed 
separately. Because of the nature of the transient applied and its effect on the structure, a 
material model must be implemented that includes plasticity, high strain-rate and temperature 
dependency. In the remainder, the validation of the Zerilli-Amstrong constitutive model of 
plasticity is discussed even though other models, such as the Johnson-Cook plasticity and 
equation-of-state models,1,5 have been documented as well. 

Measurement Predictions 
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3. THE VALIDATION DOMAIN 

Before proceeding with the description of some of the validation’s steps, the notion of 
validation domain must be introduced. Generally speaking, a numerical simulation is always 
developed to analyze a given operational domain because the interest of a point-prediction, 
that is, the prediction of a model that could not—even slightly—be modified, is limited. For 
example, a simulation of aero-elasticity is parameterized with design variables such as flow 
speed and angle-of-attack. The usefulness of a simulation that could be analyzed only for a 
single combination of these variables would be limited. 

Likewise, the plasticity model is developed to run numerical simulations at different 
combinations of strain-rates and temperatures. For our application, these two input variables 
define the operational space of interest. The validation domain is here simply defined as the 
region of the operational space where the mathematical or numerical model provides 
acceptable accuracy for the application of interest. This concept is illustrated in Figure 4. 
Simply speaking, validation is achieved when the predictive accuracy of the model has been 
assessed within the operational domain, a consequence of which is the identification of the 
region—or validation domain—that provides sufficient accuracy. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Definition of the validation domain. 

As mentioned previously, model validation cannot rely on measurements collected during 
the hydrodynamic experiment because the models must be validated before the experiment is 
performed. A suite of validation experiments is therefore designed. A validation experiment is 
a somewhat simpler procedure that isolates the phenomenon of interest. The suite of 
validation experiments hence provides increasing levels of understanding of the fundamental 
physics for the application. Static material testing comes first, which allows the identification 
of bulk mechanical properties such as the modulus of elasticity. Because such tests are static 
in nature, they must be augmented with Hopkinson bar tests. Hopkinson bar tests however do 
not provide sufficient resolution in the regime of interest, that is, at high strain-rates and 
varying temperatures. To provide more insight into the behavior of the plasticity throughout 
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the validation domain, Taylor anvil tests are performed next. The validation experiments 
explore different regions of the validation domain while providing successive material models 
that are hopefully consistent with each other. The discussion presented in this publication 
focuses on the definition of an error metric between inferences made from the Hopkinson bar 
tests and inferences made from the Taylor anvil impact tests (see section 6). 

The Zerilli-Amstrong model estimates the stress σ  resulting from a plastic deformation as: 

N
P5

)
dt

de
Tlog(CTC

1o eCeCC
P

43
++=
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σ  

(1) 

where the symbol T represents temperature and Pe  denotes plastic strain. The six parameters 
C0, C1, C3, C4, C5 and N are material-dependent constants that can be calibrated to improve 
the predictive accuracy of the model. Because of the large spread of strain-rates for which a 
validated model is sought (from the quasi-static rate of 10-3/second to 4x10+3/second), another 
symbol SR is introduced that defines the logarithm of the plastic strain rate: 







=
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d e
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It is emphasized that the Zerilli-Amstrong model is chosen for simplicity, not necessarily 
because it represents the “best” model for this application. Also, it is important not to confuse 
the six calibration variables (C0;C1;C3;C4;C5;N) with the two input parameters (T;SR) that 
define the operational space or validation domain. The main difference between the two is 
that calibration variables are introduced by our particular choice of plasticity model. Should 
another physical model be adopted, the number of calibration variables would likely change. 
The dimensionality of the operational space, however, never changes and the plasticity 
models—whatever they are—must still be validated at various combinations of (T;SR). 

4. FORWARD PROPAGATION OF UNCERTAINTY 

Two of the key technologies that support V&V are the propagation and analysis of 
uncertainty. This is because model validation is essentially an exercise in the quantification of 
uncertainty, whether it originates from the physical experiments, computations, or modeling 
assumptions. In this section and the next, some of the tools employed to propagate uncertainty 
are briefly illustrated. They include Monte Carlo sampling for propagation through forward 
calculations (section 4) and Bayesian calibration for backwards propagation (section 5). 

Uncertainty quantification tools that are not discussed, although they have been used in 
this and other studies, include the design of experiments and analysis-of-variance. Our 
application of these techniques, that we have found to be of paramount importance when 
dealing with large-size problems, are documented in several other publications.6,7,8 

Figure 5 shows several deformed profiles simulated with the finite element package 
HKS/AbaqusTM. In this numerical simulation, an axi-symmetric mesh is impacted against a 
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perfectly rigid surface, which produces large deformations (over 260%) and significant plastic 
strain at the crushed end of the cylinder. The profiles compared in Figure 5 are obtained by 
varying the calibration variables (C0;C1;C3;C4;C5;N) according to a probability law. 

 
Figure 5: Several examples of randomly selected simulated deformation profiles. 

In this illustration, each calibration variable is assumed to vary according to a Gaussian 
Probability Density Function (PDF). The mean values are nominal values obtained by best 
fitting the Zerilli-Amstrong model of plasticity to Hopkinson bar test data. The standard 
deviations are arbitrarily initialized to 20% of the mean values. Because the calibration 
variables are assumed to be independent and uncorrelated, sampling the six individual PDF 
laws is straightforward. Random samples of coefficient values are drawn from the six normal 
distributions independently. A combination of variables (C0;C1;C3;C4;C5;N) then defines a 
specific material model and the impact simulation is repeated for each model. 

This procedure defines a Monte Carlo simulation and a total of 1,000 finite element 
calculations are performed. This number of simulations is selected somewhat arbitrarily based 
on the time necessary to perform a single analysis and the available computing resource. 
Results of the Monte Carlo simulation are illustrated in Figures 6 and 7. 
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Figure 6: Distribution of features (L/Lo) and (R/Ro) obtained from a 1,000 Monte Carlo simulation. 

 
Figure 7: Histograms of simulated features (L/Lo) and (R/Ro). 

In Figures 6 and 7, two features of the response are defined to characterize the deformed 
profiles, the ratios of final-to-initial lengths (L/Lo) and footprints (R/Ro). In Figure 6, each 
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point corresponds to the result of an impact simulation for a particular material model. It can 
be observed that there is a significant correlation between the two output features, as one 
would expect because the shorter the cylinder, the larger its footprint. The histograms shown 
in Figure 7 are obtained by projecting the distribution of output features on the horizontal and 
vertical axes. Each axis is then discretized in twenty bins and the histograms simply show 
how many features are counted within each bin. The histograms approximate the output PDF. 
It can be observed from their asymmetries and long tails that the probability laws of response 
features (L/Lo) and (R/Ro) are not normal. It is well known that a Gaussian PDF propagated 
through a non-linear system such as this finite element simulation does not stay Gaussian. 

Monte Carlo simulations are popular because of their simplicity and well-established 
convergence properties. Our simple illustration demonstrates the propagation of uncertainty 
from inputs to outputs and the estimation of the response’s probability structure, from which 
statistics can be calculated. To guarantee convergence, however, large numbers of samples 
may be required in which case other sampling strategies—for example, stratified sampling 
such as the Latin Hypercube Sampling9 or orthogonal arrays10—offer attractive alternatives. 
Screening experiments and analysis of variance can also be performed to understand which 
input variables or combinations of variables are most responsible for explaining an observed 
or simulated spread of responses such as the one pictured in Figure 6.6,8 

5. INVERSE PROPAGATION OF UNCERTAINTY 

The calibration of a model’s parameters is a technique often employed to improve the 
accuracy of numerical simulations when compared to measurements. Parameter calibration is 
generally formulated as a deterministic inverse problem. A cost function is defined as the 
“distance” in some sense between measurements and predictions. The parameters of the 
model are then optimized to minimize the cost function. In the context of statistics where it is 
recognized that both calibration parameters and response features are random variables, a 
mechanism must be found to propagate uncertainty from the measurements back to the inputs. 
This is here referred to as the inverse propagation of uncertainty. 

Although many formulations are possible, the discussion focuses on the Bayesian 
formulation implemented for the Taylor impact application.11 Like in the deterministic case, a 
procedure for inverse propagation of uncertainty starts with the definition of a cost function. 
The main difference is to take into account that input parameters p and output features y are 
random variables, which generally implies that the cost function becomes a statistical test. In 
the case of Bayesian inference, the cost function is defined as the posterior probability that the 
parameters p=(C0;C1;C3;C4;C5;N) are correct given the available measurements yTest. The 
measurements provide evidence against which predictions are tested. The posterior PDF is 
defined as the conditional probability law of the calibration variables p: 

)) y| (p(2 TestProblog−=2e  (3) 
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The Bayes Theorem states that the posterior probability e is the product of the likelihood 
function—likelihood to predict the measurements based on a given model—multiplied by the 
prior probability of p. Under the assumption of Gaussian probabilities, the likelihood function 
is defined as the mean square error between measurements and predictions. One advantage of 
Bayesian calibration is that the cost function obtains a closed-form expression: 

( ) ( ) ( ) ( ) ( ) ( )op
T

o
1...Nk

k
Test
k

Test
y

T
k

Test
k

2 pppppyypyye
k

−Σ−+−Σ−= −

=

−
∑ 11

)()(  
 

(4) 

where the inverted matrices represent covariance matrices and the symbol po denotes the prior 
or nominal values of the calibration variables. The quantify y collects the output features, in 
our case y={(L/Lo); (R/Ro)}. The summation represents a summation over potentially different 
experimental configurations, which is addressed in section 6 (see Figure 9). For simplicity, 
the covariance matrices of measurements and prior PDF are defined as diagonal matrices, 
meaning that the corresponding random variables are assumed to be uncorrelated. 

In fact, the cost function defined in equation (4) based on the assumption of Gaussian 
probability distributions becomes the well-known chi-square statistical test that attempts to 
reject the null hypothesis that measurements yTest and model predictions y are sampled from 
the same parent population. 

   
Figure 8: Test-analysis comparison for the Taylor impact experiment. 

(Left: Measured profile. Right: Simulated profiles at 17 ms, 33 ms, and 50 ms after impact.) 

The general procedure for calculating the chi-square statistics goes as follows. First, the 
impact simulation is analyzed for a given selection of calibration variables p and experimental 
configuration defined by the temperature and strain-rate parameters (T;SR). Next, the output 
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features (L/Lo) and (R/Ro) are calculated from the final deformed profile. These two values are 
then compared to the measurements. Figure 8 illustrates the test-analysis comparison. The 
whole procedure is repeated for each combination of temperature and strain-rate (T;SR). The 
chi-square (4) is calculated by accumulating the experiment’s prediction error metrics. 

Once a numerical procedure has been defined to compute the cost function, the calibration 
variables p=(C0;C1;C3;C4;C5;N) are optimized to search for the lowest possible chi-square. 
Because the prior and posterior PDF laws have been assumed, a deterministic optimization 
solver can be used. In the case where no evidence is available to suggest a particular 
distribution, the main difficulty becomes the estimation of a posterior PDF whose functional 
form is unknown. This can be resolved with a Markov Chain Monte Carlo optimizer that 
exhibits the attractive property of being able to sample an unknown probability law.8,12 
 

Calibration 
Variable 

Prior 
Mean 

Posterior 
Mean 

Prior 
Standard Deviation 

Posterior 
Standard Deviation 

C0 175.0 102.5 35.0 20.0% of mean 32.9 32.1% of mean 
C1 950.0 954.3 190.0 20.0% of mean 62.7 9.6% of mean 
C3 3.0x10-3 4.1x10-3 0.6x10-3 20.0% of mean 0.6x10-3 14.6% of mean 
C4 8.5x10-5 11.7x10-5 1.7x10-5 20.0% of mean 2.9x10-5 24.8% of mean 
C5 675.0 996.2 135.0 20.0% of mean 22.4 2.2% of mean 
N 0.275 0.247 0.055 20.0% of mean 0.021 8.5% of mean 

Table 1: Posterior mean and standard deviation values of the calibration variables. 
 

 C0 C1 C3 C4 C5 N 
C0 100.0% -8.3% 37.2% 20.7% 48.8% 26.7% 
C1 -8.3% 100.0% 34.4% 31.1% 8.2% 13.0% 
C3 37.2% 34.4% 100.0% 80.2% 45.3% -62.1% 
C4 20.7% 31.1% 80.2% 100.0% 27.1% -46.6% 
C5 48.8% 8.2% 45.3% 27.1% 100.0% 86.0% 
N 26.7% 13.0% -62.1% -46.6% 86.0% 100.0% 

Table 2: Posterior correlation matrix obtained through Bayesian calibration. 

The results presented in Table 1 and 2 are obtained by minimizing the cost function (4) 
with a conventional, gradient-based optimization solver. Table 1 lists the mean and standard 
deviation values of the calibration variable’s prior and posterior distributions. Because the 
variables are assumed to be uncorrelated before calibration, the knowledge of their individual 
standard deviations suffices to define their joint PDF. Calibration, however, updates the entire 
covariance matrix and the resulting correlation coefficients are listed in Table 2. 

It can be first observed from Table 1 that calibration tends to reduce the standard deviation 
values, except for the variables C3 and C4. It tends to indicate that information is learned from 
the test-analysis correlation exercise. Second, Table 2 shows no strong posterior correlation 
except for the pairs (C3;C4) and (C5;N). (A significant correlation is arbitrarily defined here as 
a coefficient greater than 70% in Table 2.) It tends to indicate that the initial assumption of 
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uncorrelated variables p was correct. What causes the strong correlation between variables 
(C3;C4) and (C5;N) is unknown but believed to be an artifact of the modeling assumptions. 
Further investigation, for example with a Markov Chain Monte Carlo optimizer, is warranted 
to study if the assumption of Gaussian priors and posteriors is judicious. In conclusion, the 
example illustrates how an optimized set of calibration variables (C0;C1;C3;C4;C5;N) that best 
predicts the outcome of physical experiments performed at various settings of temperatures 
and strain-rates (T;SR) can be obtained in the context of uncertainty propagation. 

6. ASSESSMENT OF PREDICTIVE ACCURACY 

In section 5, the problem of calibrating the model’s parameters under uncertainty has been 
illustrated. Calibration, however, is only a tool in support of predictive accuracy assessment. 
A calibrated model is likely to provide small prediction errors in the neighborhood of the 
points used for calibrating its parameters but the question of adequacy in other regions of the 
operational space remains. In the remainder, an assessment of predictive accuracy for the 
plasticity model is illustrated. The illustration is purposely simplified for the sake of clarity. 

The concept of operational space (or validation domain) introduced in section 3 is essential 
to the discussion. The operational domain, that is, the set of conditions for which a validated 
model of plasticity is sought, is defined by the combination of temperature T and strain-rate 
SR, as shown in Figure 9. The red dots symbolize the settings (T;SR) at which physical 
experiments have been performed. (These are the same seven experiments used previously to 
calibrate the variables (C0;C1;C3;C4;C5;N), see section 5.) The question we would like to 
answer is the following one: “Given the uncertainty quantification work performed 
previously—that includes calibration under uncertainty—can the predictive accuracy of the 
plasticity model be estimated throughout the operational domain?”  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Location of the seven Taylor anvil impact tests in the operational space. 

Answering this question is important for three main reasons. First, simulation-based 
decision-making requires validated models otherwise decisions might be based on erroneous 
information. To validate a model, its predictive accuracy must be estimated for all potential 
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operating environments or configurations, which is precisely the object of this study. Second, 
a formal protocol is required to make comparisons between competing models. The procedure 
described here provides a formalism to decide, for example, which one of the Zerilli-
Amstrong or Johnson-Cook models is more suitable for the application of interest. Based only 
on test-analysis comparison at locations where experiments have been performed, it may 
happen that one model provides better accuracy than the other one. But a different model 
might be more suitable (less overall prediction error), or more robust to the uncertainty 
introduced by the modeling assumptions. An assessment of predictive accuracy throughout 
the entire design space captures such behaviors. 

Third, being able to quantify the prediction error throughout the operational space provides 
a practical tool to decide where additional testing should take place. In environments where 
budget restrictions and time constraints prohibit an exhaustive testing campaign, it is critical 
to know which experimental configuration will provide the most useful information about the 
model’s predictive accuracy. When budget becomes available for one more experiment, the 
configuration that could potentially improve the most the overall predictive accuracy of the 
model can be tested, instead of designing a confirmatory test. These three aspects of 
predictive accuracy assessment are briefly illustrated at the end of this section. 

 
Figure 10: Comparison between Zerilli-Amstrong models and Hopkinson bar test data sets. 

Figure 10 pictures the results of the inverse propagation of uncertainty from section 5. The 
solid lines represent the strain-stress curves predicted by the calibrated Zerilli-Amstrong 
model (1) for the seven configurations (T;SR) shown in Figure 9. Predictions are compared to 
experimental measurements obtained with the Hopkinson bar tests. The vertical bars represent 
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the experimental uncertainty. Simply speaking, Figure 10 compares the consistency obtained 
when material models are inferred from two different experimental procedures (Taylor anvil 
impacts and Hopkinson bar tests). In the remainder, the model’s predictive accuracy is 
assessed based on this consistency. 

It is emphasized that the choice of predictive accuracy metric is, to a great extent, 
application specific. Adequacy is here defined as an error between two material models. It 
could be argued that this is not a judicious choice because both material models can be biased, 
meaning that the resulting prediction metric could also be biased. This choice is made for 
simplicity. The reader will recognize that the successive steps of uncertainty quantification 
and predictive accuracy assessment proposed here can accommodate any error metric. The 
Mahalanobis distance is selected for its ability to account for experimental uncertainty: 

( ) ( ) ( ) ( ));();(;
1

R
TestTest

y
T

R
Test

R STyySTyyST −Σ−=
−

ε  (5) 

where yTest represents the mean of the measured stress-strain curves and y(T;SR) is the model’s 
prediction. As before, the covariance matrix is equal to a diagonal matrix—therefore 
neglecting the correlation between the data points—initialized with the variance coefficients 
associated to the measurements. The Mahalanobis distance extends to multivariate statistics 
the transformation XXXU σ/)( −=  that converts, for example, a normal random variable X 
with arbitrary mean and standard deviation into a zero-mean, unit-variance Gaussian U. 

 
Figure 11: Seven Mahalanobis error values available for predictive accuracy assessment. 

Figure 11 shows the Zerilli-Amstrong prediction errors computed at the seven settings in 
the two-dimensional space (T;SR) where Taylor anvil impacts have been performed. The 
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information pictured in Figure 11 is useful for local assessments of predictive accuracy 
because the prediction error is expected to vary smoothly as a function of coordinates (T;SR). 
Nevertheless, the question remains of knowing how well the model performs at locations 
where no physical experiment is available. 

This question is addressed next by developing a metamodel of predictive accuracy. 
Essentially, an interpolation is performed by best fitting a statistical model to the seven data 
points. Such model is referred to as a metamodel because its development is not based on 
physical principles. Its only purpose is to capture an input-output relationship (between the 
inputs (T;SR) and the prediction error) and extrapolate beyond the available data with 
reasonable accuracy. For simplicity, polynomial models are adopted. Other choices might 
include fractions, Krigging models, exponential decays, neural networks, support vector 
machines, etc. Selecting the appropriate model form depends on factors such as the amount 
and quality of data available, prior knowledge of the input-output relationship, and the 
analyst’s experience and preference. If the functional form of the metamodel is unknown, 
somewhat arbitrary choices are made and additional uncertainty is introduced. Naturally such 
uncertainty should be quantified and accounted for in the predictive accuracy assessment. 

 
Figure 12: Metamodel that estimates the prediction error throughout the operational space. 

Several polynomials are best fitted to the seven data points. They include linear, quadratic 
and cubic models as well as hybrid models that include some interaction effects between the 
parameters T and SR but not others. Screening experiments and analysis of variance are useful 
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to provide guidance as to which effects should be included and which can be neglected. 
Metrics such as the mean square error and the R-square statistic—and its many variants—
estimate the goodness-of-fit of a particular model. The model that best matches the prediction 
errors of Figure 11 without over-fitting the data is a quadratic polynomial: 

( ) 22 48.272.216.232.072.156.3; RRRR STTSSTST −+−−+=ε  (6) 

The significance of the curve-fit to data is R2 = 93.2% which is deemed acceptable. Obtaining 
this result includes the development of statistics for each one of the coefficients (not reported 
here). It leads to a statistical input-output relationship that can be sampled to propagate the 
uncertainty of the functional form itself. An estimation of predictive accuracy is illustrated in 
Figure 12 over the domain (T;SR). The response surface is simply obtained by calculating 
equation (6) over a 20-by-20 grid where T varies in the interval [-216; +580] degree-C and SR 
varies in the interval [-3; +3.6] in units of log10(1/second). 

The significance of Figure 12 is that it provides an estimation of the Zerilli-Amstrong 
model’s adequacy everywhere within the operational domain, without having to perform any 
physics-based simulation. The validation domain can now be defined. For example, if a 
requirement of no more than 3% error must be satisfied, Figure 12 identifies the temperature 
and strain-rate settings where the plasticity model performs well. Once such assessment is 
available, competing models can easily be compared not just in terms of test-analysis 
accuracy but also throughout the entire operational domain. Response surfaces and contours 
of prediction accuracy provide a graphical way of assessing several models. The development 
of a model validation index is currently attempted at Los Alamos to further condense the 
information such as presented in Figure 12 into a single indicator that includes the entire 
uncertainty assessment. The third aspect previously mentioned is the selection of additional 
measurements. Figure 12 shows that model accuracy is the worst for combinations of high 
temperatures and low strain-rates. If it is deemed important that the model performs well in 
this region, we might want to perform more Taylor anvil impacts there. 

7. CONCLUSION 

An application of predictive accuracy assessment is presented for a non-linear numerical 
simulation. The application involves the development of temperature dependent and high-rate 
constitutive models of plasticity. Engineering plasticity models are developed to qualify the 
performance of pressure vessels subjected to impulse loading. Model validation involves a 
suite of Hopkinson bar and Taylor anvil impact tests, the quantification of uncertainty, and 
calibration of the model’s parameters. 

After having assessed the correlation between measurements and predictions, a statistical 
metamodel is developed to estimate the predictive accuracy when the temperature and strain-
rate settings are varied. The end product is a polynomial that estimates the modeling error 
expected to be committed when the plasticity model is implemented to calculate the strain-
stress curve at any combination of temperature and strain-rate. Obtaining such information 
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over an entire operating space is essential to answer questions such as: How appropriate is the 
model overall? Which one of several competing models is best? Which physical tests might 
be useful to improve the model’s predictive accuracy? 

Several key aspects are not discussed in this publication. They include the breakdown of 
total uncertainty, the quantification of modeling uncertainty and the validation index. The 
development of a validation index that captures the overall performance of a mathematical or 
numerical model—as well as the uncertainty associated to this assessment—is currently being 
pursued. The breakdown of total uncertainty refers to the necessity to make inferences of the 
modeling error from the total error obtained when measurements are compared to predictions. 
What makes this problem difficult is that numerous sources of uncertainty contribute to the 
total error. Examples include environmental variability, measurement error, grid convergence, 
time sampling, and algorithmic and solution convergence errors. Independent investigations 
of these potential contributions are necessary to eventually isolate the modeling error. Such 
studies are currently being performed for several applications. 

Finally, modeling uncertainty refers to the uncertainty introduced by arbitrary choices such 
as functional forms and modeling assumptions. To be rigorous, an assessment of predictive 
accuracy must account for such uncertainty. Examples include the selection of data sets used 
to fit models, the form of the model itself, and variability of the statistical models. One 
roadblock is that many of these sources of uncertainty cannot be quantified probabilistically. 
Future work will attempt to quantify the variability of a predictive error assessment and study 
the robustness of model validation to the “unknown sources of uncertainty.” 
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