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Abstract

An alternative to the theory of probability is applied to the problem of assessing the robustness, to
uncertainty in model parameters, of the correlation between measurements and computer simulations. The
analysis is based on the theory of information-gap uncertainty, which models the clustering of uncertain
events in families of nested sets instead of assuming a probability structure. The system investigated is the
propagation of a transient impact through a layer of hyper-elastic material. The two sources of non-
linearity are (1) the softening of the constitutive law representing the hyper-elastic material and (2) the
contact dynamics at the interface between metallic and crushable materials. The robustness of the
correlation between test and simulation, to sources of parameter variability, is first studied to identify the
parameters of the model that significantly influence the agreement between measurements and predictions.
Model updating under non-probabilistic uncertainty is then illustrated, based on two complementary
immunity functions: the robustness to uncertainty and the opportunity from uncertainty. Finally an info-
gap model is embedded within a probability density function to represent uncertainty in the knowledge of
the model’s parameters and their correlation structure. Although computationally expensive, it is
demonstrated that info-gap reasoning can greatly enhance our understanding of a moderately complex
system when the theory of probability cannot be applied due to insufficient information.
r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

One central difficulty in identifying the form of a numerical model and experimentally
calibrating the values of its parameters is that the identification and calibration results can be
ambiguous. Alternative combinations of model forms and parameter values can yield essentially
equally good reproduction of test data. This ambiguity is sometimes analysed in terms of
analytical or numerical ill-conditioning or instability. This ambiguity is further exacerbated by the
fact that not only decision variables are involved, but numerous other unknown or uncertain
variables fluctuate beyond the control of the experimenter, and sometimes even without the
experimenter’s awareness of their presence or relevance. In short ambiguity can occur whenever
‘‘variables’’— meaning input parameters, models or conceptual forms—can interact to reproduce
the data in more than one way.

Uncertainty plays a central role in calibration and ambiguity of identification. Clearly
conceptual ambiguity and numerical ambiguity are the result of imprecision or lack of
information, both of which also result from uncertainty. Epistemic uncertainty occurs in
modelling activities when the laws that govern the evolution of a system are not known with
absolute certainty. More specifically, parameter uncertainty originates from the imprecision with
which parameters of a model are measured or identified. Uncertainty, rather than being an
accident of the scientific method, is its very nature (Adapted from a quote of Andrea Saltelli [1].)

This paper addresses the problem of refining a numerical model to make it reproduce the test
data to a given level of accuracy. To achieve this objective the correct model form and parameter
values must be inferred from the test data. In light of the above discussion this implies that
uncertainty must be accounted for and that the robustness of the identification to that uncertainty
must be established. That is, we address the question: How much uncertainty in unmeasured
variables can be tolerated without changing the identification? If the robustness to uncertainty is
great, then the ambiguity is of low significance since the unmeasured variables could vary greatly
without inducing a different model. On the other hand low robustness implies significantly
ambiguous model identification; the chosen model could change substantially due to even small
changes in the unmeasured variables.

In structural dynamics where the preferred analysis method is the finite element method, the
model identification problem has been studied extensively [2]. The work presented in this paper
departs from the state-of-the-art in finite element model updating in two main ways. First, non-
linear finite element models are developed to represent fast, transient events. Some of the
materials involved exhibit a softening behaviour and they cannot be represented with a linear
constitutive relation. In addition the dynamical phenomenon of interest is high-frequency wave
propagation. It occurs in less than 1 ms and cannot be represented using a truncated basis of low-
frequency mode shapes.

Second, due to our fragmentary information and incomplete understanding of the processes
involved, uncertainty cannot be represented with the theory of probability. Probability theory is
often taken for granted even though it can only be rigorously justified when extensive
observations are available. For example assume that X is a random variable with realisations
�0.19, +0.73, �0.59, +2.18, and �0.14. If enough samples are available, statistics such as the
mean and standard deviation can be accurately estimated. If more samples become available,
it might even be possible to estimate the probability density function. However if only the five
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observations in the previous sequence are known, about all that can be said without adding more
information that is really available is that X belongs to an interval of unknown size which is
centered somewhere in [�0.59; +2.18]. Not being able to rely on probability implies that
uncertainty propagation cannot take advantage of efficient sampling techniques. Therefore, the
computational cost of the method proposed here for uncertainty propagation should not come as
a surprise.

2. Uncertainty and its effect on common modelling activities

We start by discussing the effect of uncertainty on common modelling activities such as
correlating tests and simulations, and calibrating parameters of a model. The discussion also
introduces definitions and notations used throughout this paper.

2.1. Representing systems and uncertainties

The numerical model we seek to develop using the finite element method is simply denoted as

y ¼ MðqÞ: ð1Þ

The model provides a non-linear mapping between y, the output features (such as peak stress,
peak acceleration, fundamental resonant frequency), and q, the model’s decision parameters (such
as the constitutive law, shell thickness, friction coefficient). The selection of q entails both the
identification of the model’s parameter values as well as the choice between conceptually distinct
classes of models. The decision parameters q are distinct from system design decisions or
operational decisions based on the model, which are not considered in this paper, which
concentrates on the modelling process. A model specified by q is validated when it can be asserted
with confidence that q accurately represents the physical properties of the system throughout the
design domain or operational space.

In addition to the decision variables q we deal with uncertain variables u represented by an
information-gap model (IGM) denoted by U(u0;a):

y ¼ Mðq; uÞ; uAUðu0; aÞ ð2Þ

where the IGM will be defined in Section 3. The unknown u may represent a damping mechanism
that we are not aware of; a coefficient of strain-rate dependency; a non-linear stiffness parameter,
etc. We may have information about the uncertain variables u, however this information may be
quite fragmentary. We may not even know the identity of some of these uncertain variables. Or we
may be unsure whether a given variable should be categorised as a decision variable q or an
uncertain variable u. This expresses the fact that the actual sources of uncertainty and their
influence on the performance indicators y are incompletely known.

2.2. Robustness: immunity to uncertainty

The conventional paradigm for correlation between test measurements and mathematical
analysis states that the decision variables q can be chosen to provide a model that reproduces the
experimental data with high fidelity. However, due to the ambiguity of identification, different
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models might perform equally well. One model may be better than the others but we cannot know
which.

Furthermore, even if a single choice of the decision variables q reproduces the data with higher
fidelity than all competing models, we still cannot have confidence that this model is physically
valid throughout the design domain. The reason is that the uncertain variables u interact with
the decision variables q and thereby preserve the potential for identification ambiguity. The
quality of calibration may be due not to the physical validity of q, but to felicitous interaction
between q and u.

However when a model is obtained which is true to the data and also highly insensitive to
variations of the uncertain variables, then the validity of this model is strengthened. By
establishing the immunity of the decision variables q to the uncertain variables u, we weaken the
interaction between the latter and the former and thereby reduce the ambiguity of the
identification. This ‘‘factoring out’’ of the uncertain variables strengthens the confidence in the
validity of the model throughout the design domain.

3. Information-gap modelling of uncertainty

How to factor out the uncertain variables without relying on the theory of probability is the
focus of this section. Info-gap models of uncertainty are briefly introduced. A formulation is then
proposed to investigate the robustness of test-analysis correlation to sources of uncertainty.

3.1. Test-analysis correlation

As explained previously, a numerical model is calibrated if it accurately reproduces the test
data. The discrepancy between test data yTest and model predictions y can be assessed with
different metrics denoted by R(q;u). For instance a mean-squared error metric may be defined as

Rðq; uÞ ¼
1

N

X
k¼1;y;N

ðyTest
k � ykðuÞÞ

2: ð3Þ

The index k runs over all the repetitions of all the various different tested quantities. Note that
predictions y of the model depend upon the decision variables q as well as upon the choice of
uncertain variables u. Whatever measure of discrepancy is employed, let RC denote the greatest
level of infidelity that is acceptable. That is, a model is said to be calibrated if

Rðq; uÞpRC : ð4Þ

A model is ‘‘good enough’’ or ‘‘acceptable’’ if it satisfies Eq. (4). In other words RC specifies the
level of satisficing for the model calibration [3]. While the fidelity function R(q;u) depends upon
the uncertain or unknown quantities u, it will turn out that this is not an impediment to the
analysis. On the contrary it is the prime mover of the info-gap robustness analysis to be discussed
below. The uncertainty of variables u is modelled by an IGM U(u0;a) which is a family of nested
sets parameterised by an uncertainty parameter a>0 [3].
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3.2. Information-gap modelling of uncertainty

Before proceeding with a robustness analysis it is useful to briefly explain how the info-gap
models of uncertainty are constructed. An IGM is simply a collection of nested sets of uncertain
events. The ‘‘size’’ of these sets is controlled by the horizon-of-uncertainty parameter a. The sets,
denoted U(u0;a), are nested so that aoa0 means that U(u0;a) is included in U(u0;a0). In other words
the range of uncertain events increases as the uncertainty parameter a increases. For example
describing the random variable X of Section 1 with an IGM could consist of establishing nested
intervals within which X varies around a nominal value denoted by Xo:

UðXo; aÞ ¼ fX j X � Xoj jpag; aX0: ð5Þ

Eq. (5) shows that the range of values that the variable X can assume increases without bound as
the uncertainty parameter a increases.

Other examples of info-gap models of uncertainty are provided in Sections 6–8 and Ref. [3]. The
key point is that info-gap theory hypothesises the structure of the uncertainty space and expresses
how uncertain events cluster around one another, but no measure functions are posited. It is
important to realise that an IGM requires less information than is needed for specifying the
frequency of occurrence of events in terms of a probability density function. An IGM includes all
representations of the uncertain event—that is, all probability distributions, membership or belief
functions, intervals, random sets, etc.—that are consistent with the model’s structure and horizon-
of-uncertainty a.

3.3. Robustness to uncertainty

The value of the performance level RC is not chosen a priori. As in all info-gap analyses, the
performance level RC is embroiled in a basic trade-off and its value is chosen in light of the
resolution of that trade-off. The basic decision function of info-gap decision theory is the
robustness function #a: The robustness of decision q is the greatest value of the uncertainty
parameter a at which the model fidelity is never worse than RC. The robustness is formally defined
as:

#aðq;RCÞ ¼ max aX0; such that max
uAUðu0;aÞ

Rðq; uÞpRC

n o
; ð6Þ

where a is the horizon-of-uncertainty and u0 denotes the nominal setting of the unknown
quantities u.

The significance of the robustness function is that it assesses the degree of variation of the
uncertain u that does not jeopardise the fidelity of the model to the data. If the robustness of
decision q is large, then the model fidelity is immune to large variations of the unknown quantities
u. If #a is small, on the other hand, then even very small fluctuations of the uncertain quantities u
endanger the model fidelity. The identification of the model is therefore ambiguous when the
robustness is small. At low robustness decisions based on the model are likely to be questionable
due to the influence of variability and modelling error. Methods for judging whether #a is ‘small’ or
‘large’ are discussed elsewhere [3, Chapter 4].

A value of decision variables q whose robustness is large represents a model from which the
effect of uncertainty u has been substantially removed. If #a is large, then we have reason to believe

ARTICLE IN PRESS

F.M. Hemez, Y. Ben-Haim / Mechanical Systems and Signal Processing 18 (2004) 1443–1467 1447



that q represents physically meaningful properties of the system, uninfluenced by the unknown
auxiliary terms u.

Note also that the robustness #a depends on the demanded model fidelity RC. In fact there is an
irrevocable trade-off: the stricter the demanded fidelity (expressed as a small value of RC), the
lower the robustness (manifested in a small value of #a) [4]. Good performance is obtained at the
expense of eroded immunity to failure. Examining this trade-off of performance against
immunity-to-failure lets the analyst choose an acceptable and feasible level of demanded fidelity
RC. These aspects of decision-making under uncertainty are illustrated in Section 7.

4. Shock propagation through a hyper-elastic material

In this section, we describe the experimental system which is studied in this paper. In Section 5,
we discuss a standard approach for developing a finite element model of such a system, and we
discuss the info-gap critique of this standard analysis. In Section 6, we formulate and perform the
info-gap robustness and opportunity analysis of this system. The analysis is limited to a single
uncertain variable, all other uncertain variables being held fixed at their nominal values. The
analysis in Section 6, is repeated for each of the four uncertain variables. In Section 7, we remove
the 1-variable constraint, and perform the robustness and opportunity analyses with uncertainty
in four variables simultaneously. We discuss implications of the info-gap analysis for system
modelling, emphasising the trade-offs between robustness, opportunity, and fidelity to data.

The application of interest is a high-frequency shock performed in the summer of 1999 at Los
Alamos National Laboratory. The experiment was designed to study the propagation of a shock
wave through a non-linear, viscoelastic material [5].

4.1. Impact test setup

The test consists of dropping from various heights a carriage (drop table) on which are mounted
a layer of hyper-elastic material and a steel cylinder. Upon impact on a concrete floor a shock
wave is generated that propagates through the hyper-elastic material. The heavy steel cylinder
compresses the hyper-elastic pad and causes elastic and plastic strains during a few milliseconds.
A photograph of the setup is shown in Fig. 1a.

Four acceleration measurements were collected during each test. One signal was measured on
the top surface of the carriage and the other three were measured on top of the steel cylinder. The
former is referred to as the ‘‘input’’ acceleration signal and the latter are the ‘‘output’’ acceleration
signals at sensors 1, 2, and 3. Fig. 1b shows the input and output signals obtained when the same
test was repeated 10 times.

4.2. Observed variability and feature definition

The reason for replicate testing was to estimate the total variability of the experiment. Because
the sources of environmental and operational variability were a priori unknown, the tests were
repeated to estimate the total experimental uncertainty. Such uncertainty manifests itself through
the variables denoted by u in the previous discussion. Fig. 2 illustrates the variability of output
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signals collected at sensor 2 when a 6.3 mm-thick hyper-foam pad is tested and the carriage is
dropped from an initial height of 0.33m. Overall it can be observed that peak acceleration values
vary by 14%. Although not large, ignoring this variability would result in predictions erroneous
by several hundred g’s, which might suffice to yield catastrophic failure of the system.

To analyse the results of this experiment we focus on the peak acceleration and time-of-arrival
at sensor 2. The impulse is so short in time—and the shape of the pulse can be reproduced by a
half-sine wave—that matching these two features is sufficient to capture the energy content of the
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Fig. 1. Experimental set-up and acceleration measurements. (a) Experimental set-up. (b) Signals measured during 10

replicate tests

Fig. 2. Peak acceleration variability measured at sensor 2.
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response. In the following, these features of the measured data are denoted by the acronyms
PAC2 and TOA2, respectively.

Fig. 3 defines the two response features graphically. It is emphasised that the time-of-arrival is
not defined as the absolute time at which the signal peaks, but rather as the time it takes the shock
wave to travel from the input sensor (located on top of the drop table) to the output sensor
(located on top of the steel cylinder).

5. Finite element modelling and test-analysis correlation

This section describes the finite element simulation developed in response to testing and for the
purpose of prediction. The model-building exercise includes an assessment of the sources of
uncertainty (Section 5.1), and test-analysis correlation that establishes the fidelity of the model
(Section 5.2). The adequacy of parametric calibration is discussed in Section 5.3.

5.1. Finite element modelling

Fig. 4 illustrates the finite element model developed for numerical simulation. The analysis
program used is HKS/Abaquss-Explicit, a general-purpose package for finite element modelling
of non-linear structural dynamics [6]. It features an explicit time integration algorithm, which is
convenient when dealing with non-linear material behaviour, contact dynamics, and high-
frequency excitation. The model shown in Fig. 4 defines 963 nodes, 544 volume elements, and two
contact pairs located at the cylinder/pad interface and the pad/carriage interface. It yields a total
of 2889 degrees of freedom composed of structural translations in the three directions and
Lagrange multipliers defined for handling the contact constraints. An analysis running on a
typical single-processor workstation is executed in approximately 10min of CPU time.
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Fig. 3. Definition of the PAC2 and TOA2 response features.

F.M. Hemez, Y. Ben-Haim / Mechanical Systems and Signal Processing 18 (2004) 1443–14671450



The finite element simulation was parameterised in an effort to capture the material variability,
the experimental variability, and other sources of uncertainty. Based on experimental evidence,
see Fig. 1b, it was decided that the model had to be three-dimensional to represent the fact that the
drop table might not always hit the floor perfectly horizontally. Two tilt angles were therefore
introduced in the numerical simulation. Another source of variability was the torque applied to
the tightening bolts that held the assembly together on the carriage. The applied torque was not
measured during testing. A small scaling variation of the measured impulse was also allowed to
account for potential sensor calibration errors and other systematic bias introduced by data
decimating and filtering. These four parameters are defined in Table 1.

Other input parameters are not included in this analysis because previous work has
demonstrated that these additional parameters do not explain the observed variability [5, 7].
The tilt angles, bolt preload, and input scaling parameters constitute the decision variables q:

q ¼ fy1 y2 PB sIg
T: ð7Þ

Typical ranges for the four parameters that control the numerical simulation are shown in
Table 1. The range of each parameter is established based on experience and physical constraints.
For example observation of the carriage’s support system suggests that tilt angles greater than one

ARTICLE IN PRESS

Fig. 4. Computational finite element model.

Table 1

Input parameters of the model and their nominal ranges

Symbol Definition Nominal value Lower bound Upper bound Units

y1 First tilt angle 0.50 0.00 2.00 Deg

y2 Second tilt angle 0.50 0.00 2.00 Deg

PB Bolt preload 1.72 0.00 3.45 Mpa

sI Input scaling 1.00 0.90 1.10 Unitless
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degree are not possible. However it must be stressed that the actual ranges of these variables are
not known. The nominal values listed in the table are physically plausible estimates of the
parameter values.

5.2. Test-analysis correlation and parameter calibration

We now briefly outline a typical approach to correlate tests and simulations results, and in
Section 5.3 the limitations of this approach are identified. The info-gap response to these
limitations is developed in Section 6.

A typical test-analysis correlation study would proceed with a comparison of measured and
predicted features to assess the model’s accuracy. When the agreement is not deemed sufficient,
the input parameters (7) are adjusted to reduce the distance between measurements and
predictions. This is illustrated in Fig. 5, which shows a ‘‘2D slice’’ of the four-dimensional test-
analysis metric R(q) defined to assess the distance between measured and predicted features. The
metric is defined from the weighted L2 norm of the prediction error e(q):

yðqÞ ¼
PAC2

TOA2

� �
; eðqÞ ¼ yTest � yðqÞ; RðqÞ ¼ eðqÞTW�1

ee eðqÞ; ð8Þ

where y(q) is the output of the numerical simulation and ytest is the vector of average test results.
(A variation of this would be to average R(q) over repeated measurements.) The weighting Wee is,
here, a constant and diagonal matrix that eliminates the dimensional difference between the units
of PAC2 and TOA2. The matrix Wee is the diagonal matrix of observed variances of the
measurements of PAC2 and TOA2, whose diagonal elements are [3.4645E+03, 9.6111E-10].

Fig. 5 shows that various combinations of the decision variables preload PB and scaling sI can
provide small prediction errors when the tilt angles are kept constant and equal to 0.8	. The
response surface was generated by analysing the finite element model at 256 different
combinations of the quadruplet (y1;y2;PB;sI). Quadratic polynomials were then best fitted
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Fig. 5. Test-analysis metric R(q) versus parameters PB and sI.
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through the 256 features PAC2 and TOA2 to interpolate the surface between the points that had
not been analysed. In a typical optimisation framework the shape of the response surface would
be unknown, and an optimisation solver would be wrapped around the finite element code to
solve the problem

q� ¼ q; such that Rðq�Þ ¼ min
qA½qmin;qmax�

RðqÞ
� �

: ð9Þ

Hence the ranges listed in Table 1 define the four-dimensional hyper-cube design domain within
which parameter calibration is sought. The value of the metric at the optimal parameter set,
R�=R(q�), is the best possible test-analysis error that can be achieved with the current model.

5.3. Issues that make the approach in Section 5.2 inadequate

The test-analysis framework of Section 5.2 breaks down because of the severely ambiguous
identification of the preload PB and impulse-scaling sI variables. We noted in Section 5.2 in
connection with Fig. 5 that a continuous range of values of PB and sI provides essentially the same
fidelity between measurements and predictions. As discussed in Sections 1 and 2.2 this ambiguity
is a serious impediment to the future application of the updated model in configurations other
than explicit test points.

If we knew a probability density function for the preload and scaling variables, then we could
use any of a number of statistical tools to choose a best estimate of these entities, and thereby
remove the ambiguity. The reader is referred to Refs. [8, 9] for a discussion of uncertainty
assessment, calibration, and validation. The test-analysis correlation metric R(q) is compatible
with common tests in conventional statistics [10] or Bayesian statistics [11]. However, we know no
such probability density function. The tilt angles and bolt preload vary in unknown ways.
Measurements are not available that would justify the choice of a particular probability structure.
Simply assuming that these parameters are, for instance, uniformly or normally distributed would
be pure conjecture because evidence is not available to support such an assumption. Making
assumptions that are not backed up by strong evidence can lead to erroneous decisions with
catastrophic consequences; analysts should be careful not to assume more than is really known.1

Because there is no evidence available to justify the choice of a probability distribution to model
the uncertainty of the impact experiment, conventional methods for propagating uncertainty,
such as statistical testing, are of limited utility. It is to remedy this deficiency that the info-gap
theory of uncertainty is implemented in this study.

ARTICLE IN PRESS

1See, for example, a discussion in Ref. [12] of the toy-problem ‘‘Can the value of y be greater than 1.8 when

y=(a+b)a and 0.1oao1, 0obo1?’’ Assuming Gaussian probability distributions for parameters a, b and performing
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parameter a cannot be inferred from the above problem statement.
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6. The robustness and opportunity analyses

In Section 5, we updated the system model by choosing values of the parameters (y1;y2;PB;sI).
However, these variables are neither observed nor controlled. In fact, there is every reason to
believe that they assume widely different values during different runs and under different
conditions. In the remainder of this paper, we study the modelling implications of unknown
variations of these parameters, around the nominal or estimated values obtained in Section 5.

The variables (y1;y2;PB;sI) were considered controllable decision variables in the context of
parametric calibration (Section 5). However, we now regard them as unknown and uncontrollable
entities whose uncertainty is represented by an IGM. Henceforth, we will denote these variables
by u=(y1;y2;PB;sI) and reserve q for the decision variables. In Sections 6 and 7 it is assumed that
the only knowledge about the uncertain variables (y1;y2;PB;sI) of the finite element simulation—
which in fact are info-gap uncertain—is that they belong to intervals of unknown absolute size
and known relative size. Typical intervals are listed in Table 1. No evidence is available from
which a probability structure might be inferred, and the analysts are not willing to make further
assumptions.

The first question we would like to answer is: ‘‘How robust is our design objective to the
uncertainty in the variables u?’’ The goal is to ensure that the predictions of the finite element
model provide acceptable correlation with the tests. Clearly ‘‘acceptable’’ is a subjective and
somewhat arbitrary notion that depends on the application. For simplicity, the illustration targets
an acceptance level of no more than RC=20% error. Answering the above question is, in a broad
sense, an issue of sensitivity. We wish to estimate the sensitivity of the performance R(q;u) to
variations of the uncertain variables u, where q represents various parameters of the model being
developed.

To stress the parallel to the discussion of Section 3, it is emphasised that the parameters u=(y1;
y2;PB;sI) are info-gap uncertain variables because the characteristics of their variations are not
known with certainty, and cannot be controlled by the analysts. It is also important to recall that
the robustness analysis differentiates between decision variables q (controllable parameters that
characterise the system-model begin developed) and uncertain variables u (that represent ancillary
uncertainties). This would typically be achieved by categorising each input parameter either as a
decision variable qk (that can be chosen by the analyst) or an uncertain variable uk (which is not
controllable) in an attempt to obtain a design objective function R(q;u).

6.1. Numerical procedure

A robustness analysis consists of estimating the horizon-of-uncertainty #a that guarantees
acceptable performance as defined in Eq. (6). For simplicity, the acceptable performance region is
denoted by RpRC, and the ‘‘failure’’ region is R>RC. Uncertainty is represented using an IGM
of uncertainty denoted by U(u0;a), as outlined in Section 3. The computational and decision-
making procedures are conceptually illustrated in Figs. 6a and b, respectively. Fig. 6a shows that,
at each horizon-of-uncertainty ak, an optimisation problem is solved to provide the worst possible
performance R�(ak) within the info-gap uncertainty set U(u0;ak):

R�ðakÞ ¼ max
uAUðu0;akÞ

Rðq; uÞ: ð10Þ
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The sequence of points {ak;R�(ak)} that appear in Fig. 6a is then used to approximate the
continuous performance curve R�(a) shown in Fig. 6b. Information flows in Fig. 6a from the
vertical axis (a) to the horizontal axis (R�). Decision-making is illustrated in Fig. 6b, and it
reverses the flow of information. For the target performance RC the tolerable horizon-of-
uncertainty #a is obtained by reading the performance curve R�(a). The shaded area in Fig. 6b
represents the acceptable operating region.

Of course if the analyst is only interested in estimating #a; it is not necessary to construct the
entire curve R�(a) as illustrated in Fig. 6. Efficient search strategies can be devised that take
advantage of the curve’s proven monotonic property [13].

6.2. Robustness function for each variable

The objective of this first analysis is to assess the robustness of test-analysis correlation to
parameter uncertainty. Therefore the adverse aspect of uncertainty is investigated by answering
the question: How large can the horizon-of-uncertainty be, without causing unacceptable
deterioration of the test-analysis correlation?

The analysis starts in this section with the definition of four info-gap uncertainty levels a1�a4,
one for each uncertain variable in u=(y1;y2;PB;sI). In Section 7, we consider the four variables
together. The robustness analysis focuses on one uncertain variable uk at a time, with the other
three kept constant and equal to their nominal values. This analysis studies the effect of each input
parameter independently from the others. The performance criterion R(q;u) is the test-analysis
correlation metric defined in Eq. (8). The convex domains of uncertainty U(uk

0;ak) are simply
intervals defined by

Uðu0
k; akÞ ¼ uk j aku�k puk � u0

kpakuþk
� �

; ak > 0; ð11Þ

where the lower and upper limits uk
� and uk

+ represent the minimum and maximum bounds that
the parameter uk cannot exceed. The symbol uk denotes one of the four unknowns (y1;y2;PB;sI),
and uk

0 represents a nominal value. Table 1 defines the nominal values uk
0, and the quantities uk

�

and uk
+ are defined as follows. uk

� is the lower bound minus the nominal value, while uk
+ is the

upper bound minus the nominal value. Thus uk
� is negative, uk

+ is positive, and the uncertainty
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Fig. 6. Conceptual illustration of an info-gap robustness analysis. (a) Info-gap robustness calculation. (b) Inference of

the allowable uncertainty.
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intervals are asymmetric for the angle parameters. Because the dimensionless horizon-of-
uncertainty parameter ak is in fact not known, we confront here not a single specific interval of
variation U(uk

0;ak), but rather an unbounded family of nested uncertainty intervals {U(uk
0;ak),

ak>0}.
Fig. 7, which is the realisation of the schematic Fig. 6, investigates the deterioration of the

original test-analysis correlation due to uncertainty. The vertical axis is the uncertainty parameter
ak, and the horizontal axis is the worst quality of model performance, R�(ak), defined in Eq. (10).
The optimisation searches for the worst correlation at each uncertainty level. A gradient-based
BFGS algorithm is wrapped around the HKS/Abaquss finite element package through a
Matlabt interface. This implementation is feasible only because the algorithm optimises one
variable at a time and requires a small number of finite element calculations to converge, typically
12–15. The reason why the worst test-analysis correlation R�(ak) increases when the uncertainty
level ak increases is because R�(ak) is the solution of the maximisation problem (10). For larger
horizon-of-uncertainty parameters ak the search space U(uk

0;ak) becomes more inclusive, and the
solution R�(ak) can only increase.

It can be observed that the most adverse effects of uncertainty are associated with parameters
PB (bolt preload) and sI (impulse scaling). Uncertainty in the preload PB has the potential to
increase the original 14.5% test-analysis correlation error (at a=0) to more than 37% (at a=1).
Uncertainty in the tilt angles, on the other hand, produces little deterioration of the correlation.
Graphically it can be observed that the model is most robust to a lack-of-knowledge in the tilt
angles because the slopes of their robustness functions are the steepest, meaning that large
horizon-of-uncertainties can be tolerated with little change of the performance. From this analysis
we learn that it may not be critical during an experiment to attempt to control or measure the tilt
angles. It is also learned that no more than #a ¼ 24% uncertainty can be tolerated in the knowledge
of the bolt preload PB to guarantee that the test-analysis correlation error remains less than
RC=20%. Such information is read from the figure as #að0:20Þ ¼ 0:24:
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6.3. Opportunity function for each variable

We now investigate the beneficial aspect of uncertainty. The question is: Can uncertainty be
taken advantage of to improve the test-analysis correlation? Stated differently: Can the model
performance be substantially better than the nominal performance, even at a low horizon-of-
uncertainty?

This question is not to be confused with the previous analysis of robustness. It is in fact defined
in Ref. [3] as a judgment of opportunity. Robustness searches for the greatest info-gap parameter #a
up to which R(q;u) is necessarily at least as good as (no greater than) the demanded performance
level RC. It results in two embedded maximisation problems, as shown in Eq. (6). Opportunity, on
the other hand, is the least info-gap parameter a at which R(q;u) can be, but is not necessarily, as
good as RW. To stress the difference with the robustness function previously denoted by #a; the
opportunity is denoted by #b

#bðq;RW Þ ¼ min aX0; such that min
uAUðu0;aÞ

Rðq; uÞpRW

� �
: ð12Þ

Note that the opportunity function #b is the dual of the robustness function #a in the sense that
the maxima of Eq. (6) become minima in Eq. (12). The threshold RW is the windfall performance
and it is generally desirable to choose it much smaller than the critical performance RC, RW5RC .
In our application the critical performance is the test-analysis correlation error above which
predictions of the model are deemed inappropriate, RC=20%. The windfall performance RW

defines what would essentially be an excellent model with, say, less than RW=1% correlation
error between test and analysis.

Fig. 8 investigates the beneficial potential of uncertainty. The vertical axis is the horizon-of-
uncertainty a, and the horizontal axis is the smallest prediction error that can be attained at this
uncertainty level—that is, the result of the inner minimum in Eq. (12). The optimisation searches

ARTICLE IN PRESS

Fig. 8. Results of the best-case info-gap opportunity analysis.
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for the best possible correlation at each uncertainty level, as one uncertain variable varies while
the others are fixed at their nominal values. When the four uncertain variables are fixed at their
nominal values (a=0), the nominal performance error of 14.5% is obtained. With a horizon-of-
uncertainty of a=0.1 favourable variation of the bolt preload can—but does not necessarily—
improve the performance to a prediction error of 12%. A reduction of the error to just 1% is
possible—though not guaranteed—at a horizon-of-uncertainty of a=0.55.

As mentioned previously in the case of the robustness analysis, examining the slopes of the
opportunity functions is useful in understanding the model sensitivities. Clearly better
performance of the model—meaning a smaller test-analysis correlation error—is obtained
through a favourable variation of the bolt preload PB more easily than it can be obtained with the
other parameters y1, y2, or sI. This can be observed visually by comparing the slopes of the
opportunity functions.

From this analysis we learn that the knowledge of the bolt preload PB is critical to the
performance of the model, in terms of both robustness-to-uncertainty and opportunity to reach a
better-than-expected test-analysis correlation error. Analysts and experimentalists alike can take
advantage of this information to improve their predictive capability and test planning, by
indicating the variables to which the predictive accuracy is most sensitive. It is emphasised that the
sensitivity analyses presented here differ from conventional sensitivity studies in the sense that (1)
sensitivity is not defined through the computation of finite differences, and (2) no probability
information is assumed for effect screening or analysis of variance. The analysis here employs only
very limited information about the uncertainties which accompany the measurement and
modelling process.

7. Performance, robustness, and decision-making

After having studied the effect of each uncertainty variable uk on the performance criterion
R(q;u), the robustness and opportunity problems are now solved in the case where the uncertain
quadruplet (y1;y2;PB;sI) is modelled by a single IGM. The first objective is to identify the
allowable amount of uncertainty #a that provides an acceptable design. The four variables y1, y2,
PB, and sI are investigated jointly even though the analysis could be restricted to PB and sI because
it has been demonstrated in Section 6.2 that the prediction error is robust to tilt angle uncertainty.
The second objective is to illustrate the cost–benefit analysis that stems from reaching a trade-off
between robustness and opportunity.

7.1. Robustness and opportunity analyses of the drop test model

According to the procedure described in Section 6 the following two optimisation problems are
solved for values, ak and bk, of the horizon-of-uncertainty parameter a:

R�ðakÞ ¼ max
uAUðu0;akÞ

Rðq; uÞ; R�ðbkÞ ¼ min
uAUðu0;bkÞ

Rðq; uÞ: ð13Þ

Note that ak and bk denote values of the same horizon-of-uncertainty a. Different notations are
used to differentiate the robustness function #a from the opportunity function #b: On the left of
Eq. (13), searching for the worst test-analysis correlation error at each uncertainty level provides
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the robustness function #a: On the right of Eq. (13), searching for the best test-analysis correlation
error provides the opportunity function #b: While one always attempts to maximise the robustness-
to-uncertainty #a of a decision, the opportunity #b is minimised because it indicates the least amount
of uncertainty that could potentially improve the performance. The robustness and opportunity
functions are assessed with respect to RC=20% and RW=1%, respectively.

The uncertainty is represented by a family of nested four-dimensional intervals {U(u0;a), a>0}:

Uðu0; aÞ ¼ u ¼ u1; u2; u3; u4f gT such that � ap
uk � u0

k

u0
k

� 	
pa for k ¼ 1;y; 4

� �
;

aX0: ð14Þ

At any given uncertainty level, a=ak or a=bk, the intervals defined by the IGM (14) provide the
constraints for the optimisation problems (13). Fig. 9 presents the robustness and opportunity
functions. It is emphasised that each point in Fig. 9 is the solution of a four-dimensional
optimisation problem. Clearly, the info-gap analysis can become demanding in terms of
computational resources as the dimension of the IGM increases and more uncertainty levels,
a=ak or a=bk, are requested.

The robustness #a corresponding to an acceptable prediction error of RC=20% can be read
directly from the curve a-versus-R�(a) (star symbols, solid line). No more than 17% uncertainty
can be tolerated to guarantee 20% test-analysis correlation error. Controlling the uncertainty to
no more than 17% during the physical experiments and the development of the numerical model
surely comes at a—potentially significant—cost. For example this constraint can be translated
into a requirement of the accuracy needed to apply a torque through the tightening of bolts so
that the preload does not vary by more than 17% about the measured or estimated value.

The second curve (diamond symbols, dashed line) of Fig. 9 shows the opportunity function, or
the extent to which the modelling uncertainty might result into a better-than-expected
performance. As more uncertainty is tolerated, the parameters (y1;y2;PB;sI) deviate more from
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Fig. 9. Results of the info-gap robustness and opportunity analyses.
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their nominal settings, which enlarges the family of models. At the horizon-of-uncertainty of
#b ¼ 38% the windfall performance of RW=1% error is reached. It means that at least one finite
element model gives excellent predictions. The variables (y1;y2;PB;sI) that yield less than 1% error
between test measurements and model predictions are listed in Table 2.

7.2. Accepting sub-optimal performance to enhance robustness to uncertainty

The examples we have discussed illustrate that performance—defined, here, in terms of
prediction error—can be optimised in the context of non-probabilistic uncertainty. Valuable
information is learned about how uncertainty affects performance, without having to rely on
probabilistic or approximation methods.

Fig. 9 illustrates the important trade-off between sub-optimal performance and robustness-to-
uncertainty. The optimum model in the sense of Eq. (9) is guaranteed to produce no more than
14.5% prediction error. Its robustness to uncertainty, however, is zero. This means that the
prediction error can exceed 14.5% as soon as the parameters deviate from the calibrated solution
q�. This makes it difficult to rely with confidence on the predictions of the model in practical
situations where some of its parameters are uncertain, as is the case here. Fig. 9 also shows that
the robustness to uncertainty increases as more prediction error is accepted. If one is willing, for
example, to lower the fidelity aspiration from 14.5% error to 20% error, then one can be confident
that the predictions will not exceed 20% error even if the parameters of the model deviate up to
17% away from their nominal settings.

The lesson is that model fidelity should not be optimised but rather merely satisfied, which is
referred to as satisficing in Ref. [3]. The main benefit is that the decision’s robustness-to-
uncertainty can be enhanced when the best possible fidelity is not sought. This is important in
situations where the model upon which the decision relies is imperfect or not known with absolute
certainty.

7.3. Studying the robustness-opportunity trade-off for Cost–benefit Analysis

Cost–benefit analysis stems from discussing the trade-off between robustness #a and opportunity
#b functions. Fig. 9 shows that, at the 17% uncertainty level, the finite element simulation still
provides at least 8% test-analysis correlation error. Obtaining less than 8% error is impossible
because #b ¼ 8% is the result of a minimisation problem at the 17% horizon-of-uncertainty. In
other words the performance of the model is bounded between 8% and 20% prediction error if
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Table 2

Design that provides 1% test-analysis error

Symbol Nominal value Calibrated value

y1 0.50	 0.97	

y2 0.50	 0.98	

PB 1.72 MPa 1.28MPa

sI 100.00% 92.52%
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the analyst is only willing to accept a 17% lack-of-knowledge with respect to the nominal settings.
Contrasting the robustness and opportunity values at a given uncertainty level provides the basic
mechanism through which one can estimate the performance enhancement benefits. The other
side of the equation is to estimate the cost of not exceeding a specified level of uncertainty or lack-
of-knowledge. Reducing the uncertainty typically comes at the cost of performing more tests or
implementing higher-fidelity models. Cost assessment is not discussed here because it is purpose-
specific and application-dependent to a great extent.

One could, for example, ask what it would take to obtain a finite element model that provides a
‘‘near perfect’’ prediction of the physical test—for instance, less than 1% error. The answer is
provided by the opportunity function, #b ¼ 40%: On the other hand a 40% horizon-of-uncertainty
only guarantees no more than RC=28% test-analysis correlation error. While we seek to obtain a
perfect prediction, it could happen that our current model yields some prediction error (up to 28%
error). Weighting the cost of controlling no more than 17% uncertainty (with the benefit of
guaranteeing no more than RC=20% error) against the lesser cost of allowing up to 40%
uncertainty (with the risk of deteriorating the test-analysis correlation to 28% error) is the essence
of decision-making.

8. Hybrid uncertainty models for test-analysis fidelity

Our final application investigates the possibility of combining information-gap models of
uncertainty with probabilistic models. The same problem as before is analysed, that is, the
identification of a family of finite element models that provide a given level of prediction accuracy
while maximising the robustness to uncertainty. The main difference is that probability
distributions are assumed for random variables (which will be defined). Although no evidence
is available to justify this assumption here, the theory of probability is nevertheless utilised to
illustrate a situation commonly encountered in engineering applications. It is further assumed that
the parameters of the probability distributions are only partially known, and info-gap models are
constructed to represent the uncertainty. The example demonstrates one of the many ways in
which info-gap uncertainty can be coupled with probability. It also illustrates how several info-
gap models can be nested within each other. The problem is formulated in Section 8.1 and the
info-gap models are introduced in Section 8.2. Finally a brief discussion of opportunity versus
prediction fidelity concludes the analysis in Section 8.3.

8.1. Formulation of the performance criterion

As in any info-gap analysis, the formulation starts with the definition of a performance criterion
R. The correlation between test measurements and model predictions is assessed through the
likelihood of the model given test data. Such a metric is appropriate, for example, in the context of
Bayesian inference where the goal is to identify a family of models that best reproduce the
available test data, while exploiting a priori information that the analyst has access to about the
solution. The unknown variables of the finite element model are, as before, represented by the
quadruplet u=(y1; y2;PB;sI). Uncertainty in parameters u results in prediction errors e=yTest�y of
a model y=M(q;u).
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It is assumed that Gaussian probability laws can describe the variations of both parameters u

and errors e. We emphasise that such assumption is not, at this point, justified by evidence that
might result from empirical observations or expert judgment. It is nevertheless common practice
in engineering applications to assume the form of a probability law, if nothing else, to simplify the
computational procedure. Using the Bayes rule of posterior probability together with the
assumption of Gaussian distributions leads to the well-known formulation of the test-analysis
metric R [11]:

eðq; uÞ ¼ yTest � yðq; uÞ; du ¼ u � u0;

Rðq; u; vÞ ¼ w2 ¼ eðq; uÞTW�1
ee eðq; uÞ þ duT W�1

vv du; ð15Þ

yTest is the vector of average test results. (An alternative would be to average R(q;u;v) over
repeated measurements.) y(q;u) is the output of the numerical simulation.

The performance function (15) follows a Chi-square distribution because the underlying
probability laws of u and e are assumed Gaussian. The weighting matrices Wee and Wvv are
multivariate covariance matrices that must be defined next. First, the covariance matrix Wee of the
output features PAC2 and TOA2 is estimated from ten replicate experiments and kept constant
for the remainder of the analysis

Wee ¼
3:46  10þ3 �1:34  10�3

�1:34  10�3 9:61  10�10

" #
: ð16Þ

The second covariance matrix Wvv characterises the variability of the unknown
parameters u and it is assumed to possess five independent variance and covariance coefficients
v1�v5 such that

Wvv ¼ E ðu � u0Þðu � u0Þ
T

� 
¼

v1 v5 0 0

v5 v2 0 0

0 0 v3 0

0 0 0 v4

2
6664

3
7775: ð17Þ

The preferred scientific method to estimate the coefficients of matrix Wvv would be to measure the
random variables u in replicate experiments. However we have seen that the parameters u cannot
be measured directly. The covariance structure shown in Eq. (17) results from the judgment that
the four variables y1, y2, PB, and sI are uncorrelated with the exception, possibly, of the two tilt
angles.2 Table 3 defines the nominal variance and covariance coefficients and their assumed
ranges.

The original problem of assessing the test-analysis fidelity of a family of models given four
unknown variables u is therefore augmented with the five coefficients of variance denoted by v. A
conventional calibration would seek to optimise u such that the prediction error R is minimised.
At the optimum an estimation of the posterior covariance matrix (a first-order approximation)

ARTICLE IN PRESS

2The reason for this choice is that there is no physical reason why the parameters PB and sI should be correlated with

each other and the tilt angles. Errors in the estimation of the preload PB are not related to calibration errors represented

by sI. The carriage’s support system, on the other hand, might introduce a correlation between the tilt angles y1 and y2.
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would then be calculated as [11]:

W ðposteriorÞ
vv ¼ ðW ðpriorÞ

vv Þ�1 þ
@eðu�; v�Þ

@v

� 	T

W�1
ee

@eðu�; v�Þ
@v

� 	 !�1

: ð18Þ

Instead of seeking an optimal solution at the expense of sacrificing its robustness to the
uncertainty (see Section 7.2), the relationship between sub-optimal fidelity, robustness-to-
uncertainty, and opportunity from uncertainty is studied.

8.2. Definition of the information-gap models

Uncertainty arises from the unknown calibration variables u and the coefficients of variance v.
This situation illustrates the common case where a probability law is assumed whose parameters
are unknown. Instead of assuming yet another probability law for the unknown parameters, an
IGM is used to represent the parameter uncertainty. The lack-of-knowledge about parameters u
and coefficients v is represented by two info-gap models denoted by U(u0;a) and V(v0;b),
respectively.

The first IGM U(u0;a) describes how the unknown parameters u vary away from their nominal
settings u0 as the horizon-of-uncertainty parameter a increases. Likewise the second IGM V(v0;b)
represents the deviation of the variance and covariance coefficients v away from their nominal
settings in Table 3

Uðu0; auÞ ¼ u ¼ u1; u2; u3; u4f gT
��� aup

uk � u0
k

u0
k

� 	
pau for k ¼ 1;y; 4

� �
; auX0;

V ðv0; avÞ ¼ v ¼ v1; v2; v3; v4; v5f gT
��0p vk � v0

k

v0
k

� 	
pav for k ¼ 1;y; 5

� �
; avX0: ð19Þ

The horizon-of-uncertainty parameters au and av represent the extent to which the variables u

and v deviate from their nominal settings u0 and v0, respectively. Note that there is initially no
correlation between the tilt angles y1 and y2, as indicated by v5

0=0 in Table 3. By allowing the
covariance coefficient v5 to become non-zero the info-gap analysis not only performs a parametric
variation of the model’s parameters, but it also changes the structure of the model. In the
remainder the notation U(u0;au)xV(v0;av) defines the combined info-gap models of uncertainty.
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Table 3

Ranges of the probability law’s hyper-parameters

Symbol Definition Design domain Nominal value

v1 Variance of y1 0–15.0 10�3 deg2 0.0 deg2

v2 Variance of y2 0–15.0 10�3 deg2 0.0 deg2

v3 Variance of PB 0–5,160.0 10�3 MPa2 0.0 MPa2

v4 Variance of sI 0–16.5 10�3 0.0

v5 Covariance Cov(y1; y2) 0–15.0 10�3 deg2 0.0 deg2
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8.3. Discussion of test-analysis fidelity and opportunity from uncertainty

Once the performance criterion R(q;u;v) and the info-gap models U(u0;au) and V(v0;av) have
been established, the numerical implementation is similar to the one presented in Section 6.1. Here
the discussion is restricted to the opportunity to windfall: How far away from the nominal
knowledge (u0;v0) should one operate the model to possibly obtain—but not guarantee—
performance as good as RW? What motivates this question is the need to know if the current
family of models contains at least one member capable of providing the aspired windfall
performance RW. The model’s functional form would typically be questioned if such a model
cannot be found, or more physical tests would be requested to better quantify the uncertainty. The
answer requires the calculation of the opportunity function.

The main difference with the opportunity analysis reported in Section 6.3 and Eq. (12) is that
the Cartesian product of two info-gap models is now used, instead of a single IGM as before. For
each performance aspiration RW an info-gap analysis is performed to identify the opportunity
values ð #bu; #bvÞ where #bu and #bv refer to the opportunity functions associated to the unknown
parameters u and v, respectively

#buð #bv;RW Þ ¼ min auX0 such thatf

#bv ¼ min avX0 such that min
ðu;vÞAUðu0;auÞxV ðv0;avÞ

Rðq; u; vÞpRW

� ��
ð20Þ

Fig. 10 illustrates the performance criterion R(q;u;v) as a function of the opportunity functions
#bu and #bv labeled ‘‘design uncertainty’’ and ‘‘covariance uncertainty’’, respectively. Each point on
the surface represents the result of the optimisation of variables (u;v) in a specific domain
U(u0;au)xV(v0;av). Convergence is generally reached with about 20 finite element analyses because
the number of unknowns is small (four variables u plus five coefficients of variance v).

It can be observed in Fig. 10 that parameter variability and covariance structure uncertainty
exhibit a complex pattern of interaction. With small covariance coefficients ( #bvp50%) the best
possible test-analysis fidelity is governed by the variables u. As the covariance coefficients become
more pronounced ( #bv > 50%) and the variability of u increases, a dramatic change occurs. The
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Fig. 10. Opportunity function of the hybrid uncertainty model.
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interaction between the two sources of uncertainty suddenly yields models capable of excellent
predictions (RW=1% error). The analysis demonstrates that finite element models can be found
that meet the high aspiration for performance of RW=1% test-analysis correlation error. These
models are not unique as indicated by the non-trivial shape of the high-fidelity region
fð #bu; #bvÞ Rðq; u; vÞj p1%g: The bad news is that such models are located ‘‘far away’’ from the
nominal knowledge (u0;v0). Fig. 10 also provides important information for cost–benefit analysis
of the trade-off between experimentation costs with the consequences of not testing certain regions
of the design or operational space.

The values of parameters u and coefficients of variance v that lead to one of the high-fidelity
models (that is, R(q;u;v)p1%) are listed in Tables 4 and 5, respectively. The resulting standard
deviations of parameters (y1;y2;PB;sI) and the correlation coefficient between tilt angles y1 and y2

are given in Table 6.3 Because it was assumed that the unknown parameters u vary according to a
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Table 4

Design that provides 1% test-analysis error

Symbol Nominal value Calibrated value

y1 0.50	 0.99	

y2 0.50	 0.29	

PB 1.72 MPa 2.61MPa

sI 100.00% 103.01%

Table 5

Calibrated variance and covariance hyper-parameters

Symbol y1 y2 PB SI

y1 4.8 10�3 1.5 10�3 0 0

y2 1.5 10�3 6.7 10�3 0 0

PB 0 0 3741.5 10�3 0

sI 0 0 0 11.8 10�3

Table 6

Inferred standard deviations and correlation coefficient

Coefficient Inferred value Percent of mean (%)

s(y1) 0.07	 7.0

s(y2) 0.08	 28.3

s(PB) 1.93 MPa 74.1

s(sI) 0.11 0.1

Cor coef(y1;y2) 0.265 N/A

3The standard deviations listed in Table 6 are equal to the square roots of variances shown on the main diagonal of

Table 5. The correlation coefficient between angles y1 and y2 in Table 6 is the covariance divided by the product of the

standard deviations from Table 5.
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multivariate normal distribution, the mean vector and covariance matrix given in Tables 4 and 5
suffice to fully specify the probability law. The inference of a probability law whose functional
form is unknown can be handled much the same way although it would require wrapping the info-
gap analysis around a sampling algorithm to propagate the uncertainty from model inputs to
output predictions.

Although the correlation between the tilt angles is relatively small at 0.265, it seems important
to obtain a good correlation between measurements and predictions. Comparing the calibration
results listed in Table 2 (from a pure info-gap analysis) and Table 4 (from a probabilistic/info-gap
analysis) shows that the values of the first angle y1 and input magnitude scaling sI are consistent.
This is confirmed by the less-than-10% standard deviations for y1 and sI shown in Table 6.
Significant standard deviations, on the other hand, are obtained for the second angle y2 and bolt
preload PB. The values of y2 and PB listed in Table 4 are less consistent with those listed in Table
2, which may be another indication that these parameters vary more than y1 and sI. Valuable
information is hence learned that could be used, for example, to perform a probabilistic-based
reliability analysis or focus the instrumentation on the parameter PB that exhibits the most
variability during subsequent physical tests.

9. Conclusion

The quantification and propagation of uncertainty through a linear model has been the subject
of extensive studies in many sciences, especially in the context of probability theory. The
relationship between uncertainty and non-linear dynamics is not well understood, the main reason
being the difficulty in analysing non-linear systems. This paper illustrates how information-gap
models can be defined and analysed for studying the propagation of uncertainty through a non-
linear finite element simulation without relying on probabilities. The non-linear system considered
is the propagation of a transient impact through a layer of hyper-elastic material. The sources of
non-linearity are the softening of the constitutive law of the hyper-elastic material and contact
dynamics at the interface between metallic and crushable materials.

We have concentrated on establishing the robustness-to-uncertainty of a numerical model in
reproducing experimental measurements of a non-linear system subject to a mechanical shock
loading. This work demonstrates that model updating under uncertainty can be formulated and
solved without relying on the theory of probability. Analysts are therefore offered a practical
alternative for situations where only sparse data are available or only limited testing is possible.
The main limitation of the approach remains its computational burden, resulting from the need
for a sequence of numerical optimisations used for assessing the effect of uncertainty on
performance.

Future work will focus on the application of info-gap theory to decision-making and model
validation. Model validation—the assessment of a model’s predictive accuracy throughout a
substantial region of a design domain or operational space—requires correlation with test data. In
the case of complex engineering systems it is doubtful that enough validation experiments can be
performed to enable statistical tests of validity. Information-gap methods of validation are
therefore envisioned as, likely, the only currently available alternative.
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