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Bayesian Model Screening for the
Identification of Nonlinear
Mechanical Structures
The development of techniques for identification and updating of nonlinear mecha
structures has received increasing attention in recent years. In practical situations,
is not necessarily a priori knowledge about the nonlinearity. This suggests the nee
strategies that allow inference of useful information from the data. The present s
proposes an algorithm based on a Bayesian inference approach for giving insight int
form of the nonlinearity. A family of parametric models is defined to represent the
linear response of a system and the selection algorithm estimates the likelihood tha
member of the family is appropriate. The (unknown) probability density function of
family of models is explored using a simple variant of the Markov Chain Monte C
sampling technique. This technique offers the advantage that the nature of the unde
statistical distribution need not be assumed a priori. Enough samples are drawn to g
antee that the empirical distribution approximates the true but unknown distributio
the desired level of accuracy. It provides an indication of which models are the
appropriate to represent the nonlinearity and their respective goodness-of-fit to the
The methodology is illustrated using two examples, one of which comes from experim
data. @DOI: 10.1115/1.1569947#
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1 Introduction
The importance of diagnosing, identifying and modelling no

linearity has been recognized for a long time, e.g., for the des
of shock absorbers and engine mounts. The identification of n
linear systems began in 1979 with the introduction of the resto
force surface~RFS! method by Masri and Caughey@1#. An
equivalent method, referred to as force-state mapping, was
posed independently by Crawley, Aubert and O’Donnel@2,3#.
Since then, numerous methods were proposed. It is not our in
tion to review all the methods available but rather to cite the m
popular techniques that have been considered during the
twenty years.

The first application of the Hilbert transform was made in t
frequency domain@4#. The time-domain Hilbert transform wa
also utilized to solve an inverse problem@5,6#. The use of the
Volterra series in the field of structural dynamics began in the
1980s@7#. NARMAX models consist of polynomials that includ
various linear and nonlinear terms combining the inputs, outp
and past errors and were introduced by Leontaritis and Billi
@8,9#. Another area of signal processing that has gained imp
tance in studying nonlinear systems deals with higher-order s
tra @10,11#. These are a natural extension of the ordinary lin
spectral analysis. For a detailed description of all these te
niques, the reader is referred to reference@12#.

The development of frequency response function-based
proaches has received increasing attention in recent years.
reverse path technique has been proposed by Rice and Fitzpa
@13# and applied to simulated and experimental data@14,15#. The
conditioned reverse path formulation@16# extends the application
of the reverse path algorithm to systems characterized by no
earities away from the location of the applied force. This meth
exploits the spectral conditioning techniques introduced by B
dat @17#. A related series of papers by Adams and Allemang a
develop the frequency response function-based approa
@18,19#.

Finally, it is worth pointing out that there has also been
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growth in interest in a particular class of identification techniqu
based on a finite element model and referred to as finite elem
model updating techniques@20–22#.

The problem of variable selection is one of the common iss
in the field of identification of nonlinear systems. The purpose
to model the relationship between the response variable of inte
and a subset of predictor variables, possibly with interactions
tween these latter variables. Generally speaking, there is un
tainty about which subset to use.

A possible means of determining which variables should
included in the model is through least-squares parameter est
tion and the use of the significance factor@12#. Cumulative and
multiple coherence functions may also be used in conjunc
with the conditioned reverse path formulation@23#. The present
study investigates an inference technique based on the Baye
definition of probability—as opposed to the frequentist’s point-
view—for identifying promising subsets of predictors@24–27#.
While the frequentist interpretation defines probability strictly
the number of occurrences of an event among a collective
possibilities, the Bayesian approach defines probability as the
jective opinion of the analyst or expert. To stress the differen
between the two approaches, consider the simple question ‘‘W
is the probability of life on the planet Mars?’’ Such questio
makes no sense in the frequentist framework because observa
can obviously not be obtained from a collective of planets sim
to the planet Mars. Similarly and even though we might not
ways be aware of it, many problems occur in structural dynam
that require probability to be defined in terms of our a prio
knowledge of the phenomenon studied. The identification of
form of a model is one such problem addressed in this work.

The procedure developed in this work exploits ‘‘priors’’—th
is, a probability structure that reflects the analyst’s a priori opin
about the phenomenon investigated—on the variables of the
gression model in order to give the list of all visited models
gether with their relative posterior probabilities. Models are v
ited according to their goodness-of-fit to the data, which, in
Bayesian framework, represents the likelihood of predicting
observed response. This implies that models well fitted to
data—that is, more likely models—are visited more often. T
marginal probabilities of inclusion of single variables are a

ion
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computed. To avoid the overwhelming burden of calculating
posterior probabilities of all models, a Gibbs sampler is cons
ered to perform an efficient stochastic search of the model sp
It is emphasized that the main difficulty of this inference proble
is that the multi-dimensional probability density function~PDF! of
the family of models must be sampled. However, this PDF
unknown, making random walk techniques such as the Mar
Chain Monte Carlo~MCMC! sampling the only possible choice
Gibbs sampling has been proposed as a computationally attra
alternative to MCMC, yet, it can explore an unknown PD
@24,26#.

While the principle of Bayesian inference has previously be
applied to various problems in structural dynamics~e.g., Refer-
ences@28,29#!, no attempt has been made, to the best of the
thors’ knowledge, to adapt the Bayes updating rule to the scre
ing of model form during nonlinear system identification. After
brief discussion of model fitting in Section 2, the Bayesian scre
ing algorithm for model selection is outlined in Section 3. T
methodology is illustrated using two examples. Section 4 d
cusses a numerical simulation intended at demonstrating the o
all performance of the screening method. The second exam
involves experimental data sets collected during the Europ
COST-F3 program~Section 5!. The numerical predictability of the
identified model is finally assessed in Section 6.

2 Model Fitting
Model fitting generally refers to the calibration of model coe

ficientsb given a sequence of points (tk ;yk) in the design space
It is assumed that a model is available:

y5M ~b;t ! (1)

wheret denotes the input variables,y denotes the output variable
andb denotes the model’s coefficients.

For clarity, the discussion will assume that the model form
polynomial-like. Nevertheless, nothing prevents the Bayes
model screening proposed in Section 3 to be applied to o
functional forms. Fractional models could be considered, for
ample, to fit the poles and zeros of frequency response functi
Exponential models could be considered to represent the dec
propagating waves as a function of time or distance. Artific
neural networks are increasingly used in a variety of applicati
in structural dynamics because they can, depending on their f
approximate any non-linear function@30#.

Another notion that must be clarified before proceeding w
the discussion is the notion of ‘‘effect.’’ The model shown in E
~1! depends on inputst wheret does not necessarily refer to time
Functions of the input variablest can be defined that will be
referred to as effects and denoted byx in the following. Such
functions can assume any form, linear or non-linear. For exam
the 2-input, 1-output nonlinear model:

y50.3t112.0 sin~ t2!21.5e2t1t2 (2)

can equivalently be defined through the three effectsx15t1 , x2

5sin(t2) andx35e2t1t2 as:

y50.3x112.0x221.5x3 (3)

While the input variablest1 and t2 might be independent, not
that the effectsx1 , x2 andx3 are neither independent nor unco
related. The Bayesian model screening discussed in Sectio
does not require the effects to be independent or uncorrela
With the definition of effectsx that can be functions of the inpu
variablest, the polynomial-like model can be simply represent
as:

y5 (
k51 . . .m

xkbk5xTb (4)

The commonly encountered method of fitting the coefficientb
is to define an objective function that represents the predic
390 Õ Vol. 125, JULY 2003
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error and minimize it. The most straightforward choice is to ad
the Euclidean norm of the prediction errorek5yk2xk

Tb:

J~b!5 (
k51 . . .N

ek
Tek5eTe (5)

in which case the best, linear, unbiased estimator of the co
cientsb is provided by:

b̂5~XTX!21XTy (6)

where the column-vectory collectsN observations and theN rows
by m columns matrixX evaluates them effects for each of theN
observations:

y5H y1

y2

]

yN

J ;X5F x1,1 x1,2 ¯ x1,m

x2,1 x2,2 ¯ x2,m

] ] � ]

xN,1 xN,2 ¯ xN,m

G (7)

Clearly, other objective functions yield different estimators. T
generalization of the objective function~5! is commonly referred
to as the generalized least-squares~GLS! estimator@31#. Weight-
ing matrices are introduced and a regularization term penal
solutions too distant from the user-defined starting pointbo . Eqs.
~8! and ~9! show the GLS objective and the corresponding G
estimator, respectively:

J~b!5eTWee
21e1~b2bo!TWbb

21~b2bo! (8)

b̂5~XTWee
21X1Wbb

21!21XTWee
21y (9)

In general, weighting matrices are chosen arbitrarily or ba
on experience, for example, to weight the importance of so
observations more than others. When covariance matrices
used, the GLS estimator becomes similar to the Bayesian est
tor. Rigorously speaking, other factors should appear in the d
nition of the Bayesian objective function. Because these ad
tional factors are constant, however, the same estimator as the
shown in Eq.~9! is obtained. An important benefit of Bayesia
inference is that it provides a posterior estimate of the covaria
matrix:

Ŵbb
~posterior!5~Wbb

211XTWee
21X!21 (10)

Correlation coefficients of the posterior covariance matrix~10!
provide insight into the quality of the estimator. Reference@32#
discusses a shock propagation application where significant
terior correlation is obtained between coefficients that have
physical reason to be correlated. The authors conclude that
form of the model is inappropriate. They further demonstrate t
it is indeed the case when improved goodness-of-fit and poste
correlation indicators are obtained with a different model.

With the exception of investigating the posterior correlatio
however, no practical tool is available to select the appropr
form of a nonlinear model, which is the process we refer to
model screening. Model form—for example, replacing a line
contribution by a cubic stiffness—is usually selected based
experience or empirical observation. Sometimes, several cho
seem equally likely and the analyst has to go through the pa
taking process of fitting each model and assessing their goodn
of-fit. Because it is based on the concept of goodness-of-fit, s
approach leads to over-fitting.

Another subtle but important issue is to estimate the poste
probability of a particular model as opposed to simply relying
the goodness-of-fit. By definition, the posterior probability is co
ditioned on the evidence available—that is, experimental obse
tions. Posterior probability and goodness-of-fit complement e
other because the former indicates if the analyst’s prior opinion
the form of the model is consistent with the evidence. In Sect
3, a practical tool is proposed for model screening based on
concept of posterior probability.
Transactions of the ASME
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3 Bayesian Model Screening
In the previous section, the state of the practice in model fitt

has been briefly overviewed. Polynomial models have been c
sidered for simplicity. It is emphasized that the Bayesian mo
screening technique proposed here applies to any model, no
ter which functional form it takes. Essentially, the only two ge
eral assumptions made are as follows. First, a modey
5M (b;x) must be available. As previously mentioned, the effe
x can be linear or nonlinear functions of the input variablest.
Second, an inference is available for calibrating the coefficientb.
The inference procedure is usually referred to as ‘‘best-fittin
with polynomials and ‘‘training’’ with neural networks.

Model screening consists in identifying the most probable m
els based on a family of models defined by the user and refer
data that the model’s predictions must reproduce with the hig
possible fidelity. It is emphasized that model screening does
necessarily identify the best model but rather ranks potential m
els according to their posterior probability of occurrence.

The procedure starts by, first, defining a family of models. T
is achieved by defining various effectsxi and how these effects
are allowed to interact to form the population of potential mode
Figure 1 illustrates the concept of a family of models by show
two effectsx1 and x2 that interact with each other. The mode
forming rule illustrated in Fig. 1 is that linear and quadratic int
actions are allowed between the effectsx1 andx2 . The horizontal
plane represents the family of all potential models that must
explored. The vertical dimension represents the likelihood th
particular model is appropriate to represent the data. It is
notion of likelihood that will be employed to guide the search
the most appropriate models. Figure 1 illustrates a hypothe
situation where the model shown with a star symbol,y5bo

1b1x21b2x1
21b3x2x1

2, is the maximum likelihood model.
The second step of the procedure is to assign the prior p

ability of occurrence of each effectxi . The priors can reflect
empirical observations, experience or the analyst’s knowledg
the system investigated. In the application discussed in Sectio
for example, no specific knowledge of the system can be use
guide a pertinent choice of priors. Probabilities of occurrence
therefore set to a uniform 25% level for all effects.

The next step is to let the Bayesian screening method find
most appropriate models among all possible combinations of
fects. To identify the most probable models a measure
goodness-of-fit to the reference data must be defined. This ca
assessed using a conventional root mean square~RMS! error be-
tween data and predictions. Assuming Gaussian distributions
RMS error becomes proportional to the likelihood functi
L(yub) that estimates the likelihood that the model is appropri
given the available data:

L~yub!5 (
k51 . . .N

~yk2xk
Tb!2 (11)

Note that the likelihood function~11! is similar to Eq.~5! previ-
ously discussed. Other functions can be used, in particular
Bayesian objective~8!, as well as the many objective function
commonly used in test-analysis correlation and model upda
@33#.

Once the likelihood of a particular model has been estima
the posterior probabilities of the model’s effects can be upda
according to the Bayes Theorem that states that the posterior p
ability PDF(buy) is equal to the likelihood functionL(yub) mul-
tiplied by the prior probability PDF(b) and divided by the prob-
ability of the data PDF(y):

PDF~buy!5
L~yub!PDF~b!

PDF~y!
(12)

The probability of the observed data PDF(y) is generally kept
constant and omitted in the updating Eq.~12!. Because the proce
dure is iterative in nature, the Bayes update~12! is repeated and
Journal of Vibration and Acoustics
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posteriors of thenth iteration become the priors of the (n11)th
iteration. All models visited are kept in memory and, once enou
samples have been drawn, the probability of occurrence of ea
model is estimated by the frequency of occurrence—that is, t
ratio between the number of times each model is visited and
total number of models visited. The iterative procedure is summ
rized in Fig. 2.

In summary, Bayesian model screening provides the probab
ties of occurrence of the most appropriate members of a us

Fig. 1 Concept of ‘‘family’’ of models

Fig. 2 Simplified flow chart of the Bayesian model screening
algorithm
JULY 2003, Vol. 125 Õ 391
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defined family of models, their goodness-of-fit indicators and th
posterior probabilities PDF(buy) of effects involved in the most
likely models.

To do so, however, the unknown posterior probability functio
must be sampled. The problem of exploring an unknown PDF
solved with the Markov Chain Monte Carlo algorithm. The
MCMC sampling is advantageous in this situation because it c
sample any distribution, whether it is Gaussian or not. Th
MCMC sampling can be viewed conceptually as an optimizatio
solver that performs a random walk through the optimizatio
space. This concept is illustrated in Fig. 3 where points in t
optimization space are sequentially visited. More appropriate s
lutions are guaranteed more frequent visits because the accept
criterion of a given solution is based on its likelihood function.

Each candidate point in the design space—here, the des
space is the horizontal plane of potential models illustrated
Figs. 1 and 3—is accepted or rejected based on its value of
likelihood function~11! and a Chi-square test. This particular ac
ceptance criterion implies that inappropriate models have a sm
chance of being accepted just like appropriate models have
small chance of rejection. If rejected, a new point is random
selected in the neighborhood of the last accepted point. The
quence of points accepted is stored to estimate, once the pro
has been completed, the probability of occurrence of each mod

The sampling procedure used in this work is the Gibbs sa
pling, the simplest of the many variants of the MCMC algorithm

Fig. 3 Concept of random walk optimization

Fig. 4 Illustration of MCMC and Gibbs random walk sampling
strategies
392 Õ Vol. 125, JULY 2003
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The main difference between the two is that the Gibbs algorit
samples one direction of the design space at a time, which m
for simpler numerical implementation. Figure 4 illustrates the d
ference between MCMC and Gibbs sampling. It pictures two r
dom walks from the lower left corner (x50;y50) to the upper
right corner (x51;y51). A constraint is enforced that preven
the 30 points drawn in both sequences from being repeated
from moving backwards. Pentagram symbols show a sequenc
Gibbs samples while hexagram symbols picture a realization
the MCMC chain. In the former case, the solution is advanced
one direction at a time whereas the MCMC chain randomly
vances the solution in the two dimensions simultaneously.

4 Numerical Application
The first application presented is extremely simple and aim

illustrating the overall performance of the model screening pro
dure. Consider an output variabley defined by the following
input-output model:

y52 sin~2t !13 cos~ t !21.5 sin~3t !cos~2t ! (13)

where t is an input variable that varies from zero to fifty wit
increments ofDt50.05. It is assumed that the model form show
in Eq. ~13! is unknown. Instead, observationsyk5y(kDt), for k
50 . . . 100, are obtained and the problem consists in identify
the numerical model that best matches the observed data.
emphasized that, in this numerical simulation, no actual exp
ment is performed. The continuous solution~13! is shown in Fig.
5 with a solid line. The hexagram symbols represent the disc
samples assumed to be collected.

Next, consider a set of candidate predictors:

5
x15sin~ t !
x25cos~ t !
x35sin~2t !
x45cos~2t !
x55sin~3t !
x65cos~3t !

(14)

In addition to the six predictors of Eq.~14!, six other predictors
labeledx7 , x8 , x9 , x10, x11 andx12 are defined as random func
tions. It can be observed that, if the functional form of the outp
variabley were known, it could be written as:

y53x212x321.5x4x5 (15)

Fig. 5 Simulated non-linear function „13…
Transactions of the ASME
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Clearly,y does not depend on predictorsx1 , x6 , x7 , x8 , x9 , x10,
x11 and x12. The objective of model screening is to identify th
model form~15!. Equivalently, it can be stated that the objectiv
of model screening is to identify the linear effectsx2 , x3 and the
linear interaction effectx4x5 from all the potential combinations
defined by the family of models considered.

The family of models defined for this illustration is compose
of the linear models that include the twelve linear effectsxi and
the linear interaction models, defined as the previous models a
mented with the 66 interaction effectsxixj . The total number of
different effectsxi and xixj with twelve predictors is therefore
equal to 78. The total number of different models that can
defined belonging to this family by combining the 78 effects is
excess of 3.02 10123 models, a number that approaches the nu
ber of atoms in the known Universe. Clearly, exploring such
large number of combinations without focusing on the models
highest likelihood would not be feasible.

The procedure described in the foregoing section is applied
the data using 50 samples dedicated to the initialization of
Gibbs sampler and 100 samples for the computation. Initializ
the Markov chain is referred to as ‘‘burn-in’’ and guarantees th
the remainder of the chain is not biased due to a particular ch
of starting point. The samples drawn during burn-in are dis
garded and only the 100 samples drawn during the optimiza
itself are kept to estimate the final probability of occurrence
each model in the family. The top five models are listed in Ta
1. It can be observed that the best model in terms of poste
model probability is the actual model. The mean-square error
the top five models is about 0.003%. This means that it is
necessary to include other terms than the ones present in the
model.

Figure 6 represents the marginal posterior probability of ea
effect being in a particular model. The prior probabilities—th
reflect the prior knowledge—are set to 25% for each linear eff
xi ; 10% for the interaction effectsxixj if one of the parent effect
xi or xj is selected in the model; and 1% only for the interacti
effectsxixj when neitherxi nor xj are considered in the mode

Fig. 6 Marginal posterior probability of each effect included in
the family of models

Table 1 Top five models and number of appearances

Model Effects Posterior Probability

1 x2 , x3 , x4x5 52.0%
2 x2 , x3 , x4x5 , x10 3.0%
3 x2 , x3 , x4x5 , x3x4 2.0%
4 x2 , x3 , x4x5 , x2x10 2.0%
5 x2 , x3 , x4x5 , x2x5 2.0%
Journal of Vibration and Acoustics
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These uniform probabilities reflect the fact that little is know
about the form of the model before starting the analysis. It can
observed that effects 2, 3 and 43, namelyx2 , x3 and x4x5 , are
associated with a probability of 100% while the other effects m
be ignored because their posterior probabilities are reduce
insignificant levels.

In conclusion, the Bayesian model screening clearly sugges
model that includes the three effectsx2 , x3 andx4x5 . The iden-
tified coefficients corresponding to these effects are equal to 2
2.02 and21.52, respectively, and they are in good agreement w
the actual coefficients shown in Eq.~15!. The algorithm is imple-
mented as interpreted Matlab™ functions and it performs
analysis in a few seconds of CPU time with a typical desk
personal computer.

5 Experimental Application
In this Section, Bayesian model screening is applied to

problem of identifying the form of a nonlinear model using re
experimental data. The analyzed data sets are chosen from
proposed by the VTT Technical Research Center of Finland wit
the framework of the European COST action F3 working gro
on ‘‘Identification of Nonlinear Systems’’@34#.

The structure investigated consists of wire rope isolat
mounted between the load mass and the base mass, as sho
Fig. 7. The load mass acts like a free inertial mass. The mo
and forces experienced by the isolators are measured. In par
lar, the acceleration responsesẍ2 and ẍ1b of the load mass and
bottom plate, the applied forcef and the relative displacementx12
between the top and bottom plates are measured. The excit
produced by an electro-dynamic shaker corresponds to a w
noise sequence, low-pass filtered at 400 Hertz. What makes
system interesting for identification is that the attenuation of
vibration across the interface is difficult to characterize beca
the mechanics of the isolators is unknown to a large extent. S
nificant nonlinear dynamics are expected due to the geomet
nonlinearity—pre-loading in the wire rope isolators changes w
the load mass.

Fig. 7 Wire rope isolators
JULY 2003, Vol. 125 Õ 393
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Four excitation levels are considered ranging from 0.5 Volt
to 8.0 Volt. A nominal series of four tests are performed with
load mass of 2.2 kg. A fifth test is also carried out with the heav
load mass of 5.8 kg. Table 2 defines the testing matrix from wh
data sets have been collected.

Reference@35# discusses the identification of the VTT benc
mark structure using the RFS. The main idea behind the R
method is briefly overviewed to explain the system identificat
approach and the reader is referred to Reference@35# for more
details.

The derivation of the main equations of the RFS method st
by writing Newton’s second law for the load massm2 , which
yields:

m2ẍ21 f NL~x22x1b ,ẋ22 ẋ1b!50 (16)

where f NL denotes the nonlinear internal force. Clearly, the fo
f NL is unknown but it can be ascertained, as shown in Eq.~16!,
that its value depends on the displacement and velocity of the
mass relative to those of the bottom plate. Introducing the rela
displacement,x125x22x1b , Eq. ~16! becomes:

f NL~x12,ẋ12!52m2ẍ1b2m2ẍ12 (17)

Equation ~17! can be viewed as describing the response o
SDOF system subjected to a base acceleration. Because the
eration signals shown in the right-hand side of Eq.~17! are mea-
sured and the mass is known, it is possible to compute the re
ing force f NL at each instant from Eq.~17!.

The value of the restoring force is shown in Fig. 8 in the fo
cases where the load mass is equal to 2.2 kg~Tests 1–4!. At low
excitation level, the system’s behavior is predominantly linear
cause the restoring force varies linearly with the displacemen
can be observed for the 0.5 Volt and 2.0 Volt levels. As the ex
tation level is increased, a softening stiffness nonlinearity appe
as can be observed from the 4.0 Volt and 8.0 Volt levels.

Fig. 8 Estimation of the restoring force at the four levels 0.5
Volt, 2.0 Volt, 4.0 Volt and 8.0 Volt

Table 2 Testing matrix of the VTT benchmark

Forcing Level Mass 1~2.2 kg! Mass 2~5.8 kg!

Level 1 ~0.5 volt! Test 1 —
Level 2 ~2.0 volt! Test 2 —
Level 3 ~4.0 volt! Test 3 Test 5
Level 4 ~8.0 volt! Test 4 —
394 Õ Vol. 125, JULY 2003
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The next step of the RFS method is to describe the resto
force by means of a mathematical model. This is achieved thro
model fitting such as described in Section 2. The generic form
models sought is usually given by:

f ~x,ẋ!5(
i 50

m

(
j 50

n

a i j x
i ẋ j (18)

To resolve the problem of order determination, which refers to
identification of the most appropriate dimensionsm, n in Eq. ~18!,
an over-determined system of linear equations is formed with
available restoring force data. The singular value decompositio
then used to select the appropriate order. Reference@35# details
the identification procedure and shows that the final model
cludes a linear stiffness term, a viscous damping term and a n
linear stiffness contribution:

f NL~x12,ẋ12!5klx121cl ẋ121knlux12uasign~x12! (19)

where the coefficientskl , cl , knl and a identified with the RFS
method and singular value decomposition are listed in Table
These results are used in the remainder as the reference thr
which the performance of the Bayesian model screening
assessed.

The final model features a mean square error~MSE! equal to
2.11%, which indicates an excellent correlation to test data.
MSE indicator is a normalized metric that measures the goodn
of-fit between model predictions and physical observations. I
defined as:

MSE5
100

Nsy
2 (

k51 . . .N
~yk2xk

Tb̂ !2 (20)

where, to comply with notations introduced in Section 2,yk rep-
resents the available restoring force data andsy is the standard
deviation of datayk . The vectorb collects the coefficientskl , cl
andknl , assuming that the exponenta is known and equal to 1.5
and the vectorxk collects the corresponding effects in Eq.~19!.

The exercise of identifying the most appropriate model form
now repeated with the Bayesian model screening. First, three
fects are defined in agreement with Eq.~19!. They are the linear
stiffness x12, linear damping ẋ12 and nonlinear stiffness
ux12uasign(x12). The corresponding coefficients are denoted bykl ,
cl and knl , as before. Second, model-forming rules are defin
which are that main effects and linear interactions between
main effects are allowed. This means that a total of six effe
leading to sixty two different model forms are allowed. Such co
binatorial complexity is trivial compared to the example discuss
in Section 4. The complexity here stems from the fact that r
data sets are analyzed with all the risk of erroneous identifica
caused by ‘‘noisy’’ measurements and signal conditioning issu

Because the exponenta is unknown, the Bayesian mode
screening is repeated for several assumed values ofa. The value
that leads to the smallest MSE is retained. Repeating mo
screening could become CPU-time intensive if long MCM
chains are requested for each analysis. For this application
initial chain of length 50 is dedicated to burn-in and a chain
length 300 is requested for the optimization. It has been veri
that requesting more samples does not improve the quality of
final results. Figure 9 shows the evolution of the MSE as a fu
tion of the exponenta. The minimum value is obtained fora

Table 3 RFS identification of Eq. „19…

Coefficient Value Units

kl 1.09 1016 N/m
cl 183.44 N.sec/m
knl 28.52 1017 N/m1.5

a 1.5 Unitless
Transactions of the ASME
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51.5, the same value as the one identified in Reference@35# with
the RFS method and singular value decomposition. It may se
paradoxical that the MSE greatly increases fora51, i.e., for a
linear model while its value remains low in the neighborhood
a51 ~e.g., a50.99). The reason is that there is still a slig
curvature for values ofa different from 1 that can be enhanced b
taking high values of the corresponding nonlinear parameterknl .

Table 4 and Figure 10 display the top five models and
marginal posterior probability of each effect, respectively. T
mean square error for each of the top five models is aro
2.37%, very similar to the RFS results previously reported. Su
low MSE values indicate that the agreement with experimen
data meets the expected level of accuracy. The most likely mo

Fig. 9 Evolution of the MSE as a function of the non-linearity
exponent a

Fig. 10 Marginal posterior probability of each effect included
in the family of models

Table 4 Top five models and number of appearances

Model Effects
Posterior

Probability

1 x12 ,ẋ12 ,ux12u1.5 sign(x12) 86.0%
2 Model 11x12ux12u1.5 sign(x12) 7.0%
3 Model 11 ẋ12ux12u1.5 sign(x12) 3.0%
4 Model 11x12ẋ12 2.6%
5 Model 11x12ux12u1.5 sign(x12)1

ẋ12ux12u1.5 sign(x12)
0.3%
Journal of Vibration and Acoustics
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in Table 4 includes only the main effectsx12, ẋ12 and
ux12u1.5sign(x12) and appears 86% of the time in the Markov cha

The main effects, labeled 1–3 in Figure 10, have a poste
probability of 100% while interaction effects, labeled 4–6, m
be considered negligible because their posterior probability is
low 10%. For this application, the prior probabilities were set to
uniform 20% for the main effects; 10% for an interaction effe
when at least one of the ‘‘parent’’ main effect is selected in t
model; and 1% only for an interaction effect when none of t
parents are selected. The increase in probability for effects 1–
Figure 10 and the reduction for effects 4–6 are therefore sign
cant. From these results it can be concluded that a suitable m
for the restoring force is given by Eq.~19! with an exponent equa
to a51.5.

The coefficientskl , cl , knl anda identified with the Bayesian
model screening are listed in Table 5. The last column in Tab
compares the identification results to those of the RFS metho
Reference@35#. To calibrate the model’s coefficients, the Bayesi
model screening currently relies on the least-squares estimato~6!
even though other solvers could be implemented. Although
‘‘true’’ solution is unknown, it can be stated that both metho
provide consistent results because the maximum difference is
than 10%.

The small differences witnessed between the RFS identifica
and Bayesian model screening may be attributed to the diffe
data sets used. Referring to Table 2, the RFS identification
conducted using the five combinations of input levels and lo
masses~Tests 1–5!. The Bayesian model screening is restricted
four of the five cases, as discussed in Section 6, to provid
validation of the model’s predictive accuracy.

6 Validation of the Identified Model
It was pointed out previously that only four of the five data s

are considered during the identification. These are Tests 1,
and 5. The remaining data set~Test 3, 2.2 kg load mass, 4.0 Vo
level! is exploited to assess the predictive accuracy of the ide
fied model.

Although it might not yet be the state of the practice in stru
tural system identification, many authors, among whom we cit
recent discussion of model validation in Reference@36#, have em-
phasized that identified models should be independently valida
It essentially means that independent experiments or data
should be used for model screening and parametric calibration
one hand, and model validation and predictive accuracy ass
ment, on the other hand. The predictive accuracy of a model c
not be objectively assessed over the operational range of inte
as long as the independence between training data and valid
data is not met.

Here, data sets collected during Tests 1, 2, 4 and 5 are use
model screening and system identification while the data collec
during Test 4 are used for model validation. Essentially, Eq.~19!
is evaluated with the coefficients of Table 5 to predict the res
ing force. Displacement and velocity time series in Eq.~19! are
estimated from numerical integration of the measured accelera
signals. The evolution of the predicted restoring force versus t
is then compared to the ‘‘true’’ restoring force measured dur
Test 3. The true restoring force is estimated directly from acc
eration measurements, as shown in Eq.~17!. In Fig. 11, the two

Table 5 Bayesian identification of Eq. „19….

Coefficient Value Difference~* !

kl 1.12 1016 N/m 2.75%
cl 198.19 N.sec/m 8.04%
knl 29.07 1017 N/m1.5 6.46%
a 1.5 0.00%

~* !Difference relative to coefficients in Table 3.
JULY 2003, Vol. 125 Õ 395
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time series are compared. It can be observed that the meas
and predicted forces agree to the point where the difference
tween signals is not visible.

The MSE, that assesses the overall fidelity between meas
ments and model predictions, is equal to 0.77% when the resto
force of Test 3 is predicted based on the identified Eq.~19!. Based
on the low MSE values obtained during model identificati
~2.37%! and validation~0.77%!, it can be stated that the predic
tion accuracy seems to be within 97%. This means that a pre
tion should be within 3% of a measurement, should a hypothet
experiment be conducted. Clearly, the main drawback of our
sessment of predictive accuracy is that it is based on a sin
analysis. Other validation data sets would be required to reac
more quantitative statement of accuracy. Nevertheless, this an
sis leads to the conclusion that a reliable identification has b
performed over the operational range of interest, that is, within
ranges of 2.2-to-5.8 kg load mass and 0.5-to-8.0 Volt excitat
level.

7 Conclusion
Model selection is one of the common issues in the field

identification of nonlinear systems. A Bayesian inference a
proach for giving insight into the form of the nonlinearity ha
been proposed in this paper. The key advantage of the metho
that a collection of potential models together with their poster
probability is obtained instead of the single best model. It allo
for more flexibility in deciding the most appropriate model of th
non-linearity. In addition, the marginal posterior probability
each effect being in a particular model may also be evaluated

The results obtained using two illustrative examples enable
to confirm the performance and the utility of the proposed te
nique. We believe that Bayesian model screening will become
important addition to the structural dynamicist’s toolbox.
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Fig. 11 Comparison between measured and predicted restor-
ing forces „4 Volt level …
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