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ABSTRACT 
 

Model calibration refers to a family of inverse 
problem-solving numerical techniques used to infer the 
value of parameters from test data sets. The purpose of 
model calibration is to optimize parametric or non-
parametric models in such a way that their predictions 
match reality. In structural dynamics an example of 
calibration is the finite element model updating 
technology. Our purpose is essentially to discuss 
calibration in the broader context of model validation. 
Formal definitions are proposed and the notions of 
calibration and validation are illustrated using an 
example of transient structural dynamics that deals with 
the propagation of a shock wave through a hyper-foam 
pad. An important distinction that has not been made in 
finite element model updating and that is introduced 
here is that parameters of the numerical models or 
physical tests are categorized into input parameters, 
calibration variables, controllable and uncontrollable 
variables. Such classification helps to define model 
validation goals. Finally a path forward for validating 
numerical model is discussed and the relationship with 
uncertainty assessment is stressed. 
 
1. INTRODUCTION 
 

Today’s computational resources make it more than 
ever possible to model and analyze phenomena 
characterized by complex geometries and boundary 
conditions, multi-physics, nonlinear effects and 
variability. An example of such resource is the U.S. 
Department of Energy’s Accelerated Strategic 
Computing Initiative (ASCI) that has developed several 
platforms able to sustain over 3 Tera-OPS, that is, 
3x10+12 floating point operations per second, by 
distributing computations over arrays of more than 

6,000 processors. Reference [1] discusses the overall 
ASCI program and its objectives. Examples of problems 
requiring access to these multi-physics codes and 
massively parallel architectures include global climate 
prediction, epidemics modeling, computational 
molecular dynamics, thermo-nuclear physics and 
complex engineering simulations. 
 

Obviously the hypothesis sustaining the 
development of ASCI-class computing resources is that 
predictive accuracy can be achieved if enough details 
and physics can be included in the simulation. For 
example constitutive models at the microscopic and 
nano-scale levels based on “first principle physics” such 
as statistical quantum mechanics are increasingly 
investigated. The intent is to capture the physics of 
interest at its source rather than relying on global and 
somewhat arbitrary approximations such as, for 
example, modal damping ratios in solid mechanics. 
 

In the field of structural dynamics computational 
models are developed for predicting the response of a 
system when the phenomenon is not accessible by 
direct measurement or numerical simulations are 
cheaper than testing. To develop high-fidelity models 
analysts increasingly account for nonlinear behaviors 
and variability. However implementing sophisticated 
models does not guarantee the accuracy of their 
predictions. It must be verified that the discretization, 
mathematical idealization, computational errors and 
other assumptions involved yield a satisfactory solution. 
This is usually referred to as “model validation” and 
carried out by comparing the model’s prediction to test 
data. If the agreement between measurements and 
predictions is not satisfactory, input parameters are 
optimized to improve the model’s predictive quality. 
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In this publication such definition of “model 
validation” is challenged. The reason is because 
predicting a measured response does not necessarily 
provide accuracy throughout the design or operational 
space. The notion of design space is illustrated in 
Figure 1 where, for simplicity, the structural dynamics 
model is denoted by the input-output relationship 
 

y = M(p1;p2)                              (1) 
 
where p1 and p2 denote two of the model’s input 
parameters and y denotes a scalar prediction, also 
referred to as the output feature. In modal analysis, for 
example, the input parameters p1 and p2 might 
represent a beam’s moments of flexure EI and the 
output feature might represent the first bending 
frequency. Models considered in equation (1) can range 
from general-purpose finite element analyses to simple 
polynomial models. For computational efficiency and 
visualization simplicity, it is often advantageous to 
replace physics-based models with surrogates as 
discussed in Reference [2]. 
 

 
Figure 1. Conceptual illustration of a model and 

comparison between measurement and prediction. 
 

Figure 1 illustrates a good agreement between 
model prediction and test data at one location (p1;p2) in 
the design space. The conventional paradigm of “model 
validation” is that, to obtain an accurate prediction, the 
parameters (p1;p2) or the form of the computational 
model can be optimized in such a way that the distance 
between measured and predicted features is minimized. 
Here such optimization procedure is called model 
calibration. 
 

Calibration is the main concept behind the 
development of finite element model updating methods. 
Its main drawback is that, in general, no conclusion 
about the model’s predictive quality can be made away 
from the calibration point. This issue has been 
addressed by repeating calibration experiments at 
various points in the design space. One example in 
structural dynamics is pseudo-testing where receptance 
functions are modified to generate additional data sets 

without requiring further testing [3, 4]. However this 
tends to reduce the concept of model validation to a 
series of calibration experiments, which we claim it is 
not. In addition calibration techniques, with a few 
exceptions, do not provide any statistical assessment of 
the prediction’s accuracy. 
 

The first objective of this publication is to discuss 
parametric calibration in the broader context of model 
validation. To stress the difference between calibration 
and validation, we find it necessary to separate the 
model’s variables into input parameters and calibration 
variables. Calibration variables include controllable, 
uncontrollable or measured variables. Establishing a 
clear distinction between input parameters and 
calibration variables is not generally addressed in the 
field of finite element model updating although it is 
critical to the success of a model validation experiment. 
The distinction is illustrated in section 2 that briefly 
introduces a numerical simulation of transient structural 
dynamics. A similar discussion can be obtained from 
Reference [5] that deals with applications in hydrology 
and radiation management. Calibration and validation 
are formally defined in sections 3 and 4. Finally a path 
forward for model validation is discussed and the 
relationship with uncertainty assessment is stressed. 
 
2. HYPER-FOAM IMPACT TESTING 
 

One example of numerical simulation for transient 
dynamics is the Los Alamos impact experiment, or drop 
test, discussed in References [6] and [7]. This 
application involves the transmission of a shock wave 
through an assembly that consists of a steel cylinder 
and a layer of elastomeric, or hyper-foam, material. 
 

Figure 2 pictures the hardware involved during 
impact testing. An assembly of elastomeric layer and 
steel cylinder is mounted on an impact table and 
dropped to generate the shock wave—the elastomeric 
layer sits underneath the steel cylinder and is barely 
visible in Figure 2. The input acceleration and three 
output accelerations are measured. The input 
acceleration is collected on the drop table and 
represents the acceleration inputted to the elastomeric 
layer-cylinder assembly. Three output accelerations are 
collected on top of the steel cylinder (see Figure 2). 
 

Measured 
Response 
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Figure 2. Impact test setup. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Illustration of the design space. 
 

Table 1. Drop test configurations. 
 Low drop 

(0.3 m) 
High drop 

(4.0 m) 
Thin pad 
(6.3 mm) 

Configuration 1 
(10 replicates) 

Configuration 3 
(5 replicates) 

Thick pad 
(12.6 mm) 

Configuration 2 
(10 replicates) 

Configuration 4 
(5 replicates) 

 
Foam layers of different thickness and several 

drop heights are considered during impact testing. The 
first configuration tested is defined with a 0.25-inch (6.3 
mm) thick elastomeric pad and a 13-inch (0.3 m) drop 
height. Another pad of the same material but different 
thickness—0.50 inches or 12.6 mm—is used to perform 
additional physical experiments. Similarly testing is 
performed at a second drop height of 155 inches (4.0 
m). We refer to the pad thickness and drop height as 
the two input parameters p1 and p2, respectively. 
Combinations (p1;p2) of these parameters define a two-
dimensional space illustrated in Figure 3. The two 
output features of interest are the peak acceleration 
value and the corresponding delay time between peak 
input and peak output. In Figure 3 the peak acceleration 
recorded at channel 1 is used as an example. Physical 
testing provides measurements for the four 

configurations identified with the numbers 1-4 in Figure 
3 and defined in Table 1. 
 

 
Figure 4. Variability obtained during testing. 

 

 
Figure 5. Variability of peak output at channel 1. 

 
In addition to testing various configurations each 

experiment is replicated several times to estimate the 
environmental variability. Table 1 provides the number 
of replicate experiments performed for each 
configuration. For example the first configuration where 
p1 = 6.3 mm and p2 = 0.3 m is tested ten times. Figures 
4 and 5 illustrate the response variability obtained when 
“identical” tests are repeated for the first configuration. 
Figure 4 shows the input acceleration signal and three 
output acceleration signals collected during the ten 
replicates. Figure 5 enlarges the view in the vicinity of 
output channel 1’s peak acceleration. 
 

The fact that significant variability is obtained 
when the “same” experiment is repeated ten times 
means that the recorded output varies randomly; that 
other, uncontrolled input parameters influence the 
output result; or a combination of both. None of these 
sources of variability can be ruled out a priori. An 
example of the first source—random output variability—
is measurement error. Examples of the second 
source—input parameter variability—often encountered 

Drop 
Height

Pad 
Thickness

Peak 
Acceleration 1 Mean of Measured Peak

Acceleration Values 

1,530 g 

1 
2 

3 
4 
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in experimental sciences are temperature and humidity. 
Indeed several input parameters were not controlled nor 
measured during the drop tests. They include the 
preload applied by the two tightening bolts visible on 
Figure 2 and the angles at which the carriage impacts 
the ground. It was later demonstrated that these 
parameters significantly influence the acceleration 
signals and are responsible for partially explaining the 
observed variability. Details of this analysis are provided 
in References [6] and [7]. The impact angles are 
referred to as uncontrolled parameters because they 
vary randomly from test-to-test and their variation is not 
controlled nor measured. 
 

Table 2. Parameters of the numerical model. 
Factor Description Unit 

1 Pad thickness Millimeter 
2 Drop height Meter 
3 First angle of impact Degree 
4 Second angle of impact Degree 
5 Bolt preload N/m2 
6 Hyper-foam coefficient 1 Unit-less 
7 Hyper-foam coefficient 2 Unit-less 
8 Input amplitude Unit-less 
9 Static friction coefficient Unit-less 

10 Bulk viscosity coefficient Unit-less 
 

In the drop test example the main objective of 
numerical modeling is to develop a finite element 
representation of the system capable of predicting the 
system’s response with “acceptable” accuracy, not just 
at the four points in Figure 3 where physical tests were 
performed, but throughout the input space. Prediction 
accuracy is deemed sufficient if the numerical model 
can reproduce the observed data within the level of 
uncertainty visible in Figures 4-5. At the very least the 
numerical model should reproduce the mean behavior 
observed during testing as well as some of the statistics 
such as the response’s total variance and covariance 
structure. To achieve this result it is necessary that the 
most important sources of variability encountered during 
physical experimentation be taken into account in the 
model. Our simulation of the drop test is therefore 
parameterized with ten parameters listed in Table 2. 
 

It may seem like, starting from a two-dimensional 
space, we now have to account for ten—and maybe 
more—input parameters. However it is important to 
emphasize that the problem remains essentially two-
dimensional. The reason is because the main purpose 
of the simulation is to predict the system’s response as 
a function of pad thickness and drop height. Input 
parameters 3-10 in Table 2 represent additional 
variables introduced by the modeling effort. In the 
remainder they are referred to as calibration variables 
to stress the distinction with the two input parameters p1 
and p2 we are genuinely interested in. Table 3 classifies 
the ten parameters in four sets according to whether 
they are genuine input parameters of the problem, 

controllable calibration variables, uncontrollable 
calibration variables or measured variables. 
 
Table 3. Current classification of input parameters. 
Factor & Description I C U M 
1, Pad thickness X    
2, Drop height X    
3, First angle of impact   X  
4, Second angle of impact   X  
5, Bolt preload   X  
6, Hyper-foam coefficient 1  X   
7, Hyper-foam coefficient 2  X   
8, Input amplitude    X 
9, Static friction coefficient  X   
10, Bulk viscosity coefficient  X   

I: input parameter; C: controlled; U: uncontrolled; M: 
measured. 
 

Table 4. Ideal classification of input parameters. 
Factor & Description S I C U M
1, Pad thickness ++ X    
2, Drop height ++ X    
3, First angle of impact ++    X 
4, Second angle of impact +    X 
5, Bolt preload ++    X 
6, Hyper-foam coefficient 1 -  X   
7, Hyper-foam coefficient 2 -  X   
8, Input amplitude ++    X 
9, Static friction coefficient -  X   
10, Bulk viscosity coefficient -  X   

S: indicator of global sensitivity (“++” is high; “+” is 
medium; “-“ is low); I: input parameter; C: controlled; U: 
uncontrolled; M: measured. 
 

Ideally all calibration variables should be 
eliminated from the analysis to reduce its dimensionality 
and leave only the relevant input parameters. Variables 
can be eliminated in three main ways. First parameter 
calibration techniques can be implemented to infer the 
value of a variable from experimental data sets. 
Secondly the physical experiment can, in some cases, 
be modified to provide more control over a previously 
uncontrolled variable. The best way to eliminate a 
variable, however, remains through direct 
measurement. This is reflected in Table 4 that illustrates 
an “ideal” situation where all significant calibration 
parameters are measured. By “significant” it is meant a 
parameter that largely contributes to the total output 
variability. Statistical techniques such as the analysis of 
variance (ANOVA) can assess the global influence of 
an input parameter throughout the design space [8]. In 
the case of the drop test, ANOVAs have demonstrated 
that calibration variables 3, 4, 5 and 8 contribute to the 
output variability more than any other. Ideally they 
should be measured during the experiment. Other 
variables, such as the material coefficients 6-7 and 
numerical coefficients 9-10, cannot be measured 
directly. However one advantage is that they 
characterize intrinsic properties of the hyper-foam 
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material and are not expected to vary within the design 
space. The second best option would be to infer, or 
calibrate, their values from experimental data sets. 
 

Additional drop tests are being planned to reflect 
the ideal testing setup illustrated in Table 4 as opposed 
to the definition of past tests (Table 3). In particular the 
preload will be measured directly by instrumenting the 
bolt or inserting a piezoelectric washer. Values of the 
potentially non-zero angles of impact will be inferred 
through the procedure discussed in section 3. 
 
3. MODEL CALIBRATION 
 

Model calibration is defined as the optimization of 
input parameters and/or calibration variables such that 
the agreement between the measured and predicted 
responses is improved. In the field of structural 
dynamics such inverse problems are generally 
formulated as parametric optimization problems 
although other approaches are available for non-
parametric optimization or two-point boundary value 
problems [9]. The discrepancy between measured and 
predicted responses is expressed as a distance vector 
{e} such as 
 

{ } { } { }PredictedMeasured yye −=                     (2) 
 
For example {e} might collect the differences between 
measured and computed modal frequencies in linear 
structural dynamics. Then a cost function J is defined 
for minimization 
 

{ } [ ] { } { } [ ] { }dpSdpeSe 1
PP

T1
EE

T −− +=+ dp)J(p         (3) 
 
The definition of the cost function can be purely 
deterministic or include a representation of the 
uncertainty associated to the test data and variability of 
the calibration parameters. One such example is the 
Bayesian parametric inference documented, among 
others, in References [10] and [11]. The cost function 
can also represent a statistical test, such as the 
Kullback-Leibler entropy used in Reference [12] for 
discrimination and clustering analysis. Reviews of finite 
element model updating in structural dynamics are 
available from References [9] and [13]. 
 

In any case values of the model’s parameters are 
inferred from test data at one point in the design space. 
Inference does not provide information about the 
parameters away from the design point where the 
calibration experiment is performed. This is illustrated in 
Figure 6. At best calibration improves the predictive 
accuracy of the numerical model in the vicinity of one 
combination (p1;p2). In addition it is emphasized that the 
overall predictive accuracy of the model cannot be 
assessed through calibration only. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Prediction improvement via calibration. 
 

An example of model calibration is provided below 
for the hyper-foam application introduced previously. 
The purpose of this example is to emphasize that 
calibration does not validate model predictions in any 
way and that calibration results should be confirmed 
with independent investigations as much as possible. 
 

In the case of the hyper-foam impact application, 
surrogate models are developed to establish a simple, 
polynomial relationship between the eight calibration 
variables of Table 2 and six output features defined as 
the peak accelerations and times-of-arrival at the three 
output sensors [6-7]. Figure 7 illustrates one of these 
surrogate models for configuration 1 that, after careful 
design of experiments and ANOVA variable screening, 
takes the form of a quadratic polynomial. 
 

 
Figure 7. Surrogate polynomial model. 

 

p2 

Total 
Prediction
Error STotal

Improvement 
Brought by 
Calibration 

p1 

Prediction 
Error Before 
Calibration 

 
 

Prediction 
Error After 
Calibration 
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Figure 8. Inference of the angles of impact. 

 
Variables of the finite element model are then 

calibrated using the six mean features obtained from 
the drop test measurements as the reference. The 
optimization provides values for the four most sensitive 
calibration variables—for example Figure 7 shows that 
the inferred value of the second impact angle is equal to 
0.7 degree—but such information is of little value to the 
analyst unless it can be verified by independent means. 
To verify that the calibration exercise provides 
reasonable results, the measured output acceleration 
signals are integrated numerically to obtain the 
positions versus time. Then a plane is fit through the 
displacement history of the three accelerometers as 
illustrated in Figure 8. The plane’s inclination provides 
an independent verification of the angle of impact. 
Remarkably a value equal to 0.65 degree is obtained at 
the time of impact. This result indicates that our 
methodology of fitting surrogate models through an 
appropriate design of experiments [8, 14] and 
calibrating the unknown parameters seems to provide 
accurate results. 
 
4. MODEL VALIDATION 
 

Validation may be defined as the process of 
determining the degree to which the output of the 
simulation code agrees with the actual behavior of the 
physical system in a specified application. A formal 
definition is given in Reference [15] as 
 

“The substantiation that a model within its domain 
of applicability possesses a satisfactory range of 
accuracy consistent with the intended applications 
of the model.” 

 
This definition clearly identifies the three key issues of 
model validation: 1) A model is defined throughout a 
domain of applicability, or design space, and not just at 
a single operating point. 2) The application intended 
must be consistent with the model’s original purpose. 3) 
Validation must be established through the assessment 
of confidence that the predictions are accurate. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Concept of uncertainty quantification. 
 

The goal of model validation is therefore to specify 
the uncertainty in a prediction made by a simulation 
code for a hypothetical new experimental situation. 
Such definition confers a central role to the 
assessment, or quantification, of uncertainty. The 
concept is illustrated in Figure 9. At the design point 1, 
a validation experiment is performed and the total error 
between measured and predicted responses can be 
estimated. The central question is to estimate the total 
prediction error at the second design point where no 
experimental data are available. 
 

Uncertainty quantification (UQ) of a code’s output 
provides the metric needed to specify the degree of 
agreement between the simulation prediction and 
reality. The ultimate goal of the UQ process is to 
construct an uncertainty model for every component of 
the simulation code, which taken all together summarize 
how well the code’s predictions agree with all available 
experimental results. This same set of uncertainty 
models is used to estimate the uncertainties in code 
prediction of a new application (see Figure 9). It is 
emphasized that uncertainty models do not necessarily 
have to be statistical in nature. Other frameworks, such 
as the non-probabilistic theory of information gap, might 
be more appropriate in cases of extreme uncertainty or 
scarce experimental data [16]. In the remainder, 
however, statistical models of uncertainty are assumed 
for simplicity. 
 

We have seen that a pre-requisite to model 
validation is that the total error between physical 
observation and model prediction be characterized. A 
possible path forward is now discussed. One approach 
is to break down the total error into individual 
components and estimate their probability information 
 

)N(0;Se
);pM(py

eyy

TotalTotal

21Predicted

TotalPredictedMeasured

=
=

+=
                      (4) 

 
For simplicity the error model is assumed Gaussian in 
equation (4). The main difficulty is that such error model 

p2

Total 
Prediction
Error STotal

Prediction 
Error at a 

Point Where 
Testing Has 

Been 
Performed 

p1

Prediction Error at a 
Point Where Testing 

is Not Available 

1 2 
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N(0;STotal) must be derived over the entire design 
space—which means that the total variance S2

Total is a 
function of the model’s input parameters (p1;p2)—with 
limited validation experiments. The analysis of a single 
test, which is typical of a calibration experiment, will not 
permit to derive an error model valid over the entire 
design space. The total variance S2

Total between 
measurements and predictions can be decomposed if 
independent Gaussian processes are assumed 
 

2
M

1,2i

2
i

2
D

2
T

2
Total SSSSS +++= ∑

=

                  (5) 

 
Equation (5) states that there are several independent 
components that contribute to the total error. For 
example the total error might include a measurement 
error of variance S2

T, discretization error of variance S2
D 

and parametric variability of variance S2
j—Sj denotes 

the output feature’s standard deviation due to variability 
of the jth parameter pj. The total variance S2

Total can be 
obtained from a comparison of measured and predicted 
responses for a design of experiments that attempts to 
explore the input space as much as possible. 
Components such as S2

T and S2
D are estimated by 

investigating the measurement system and mesh 
convergence properties, respectively. The variability S2

j 
of the output due to input parameter uncertainty is 
typically identified through an input-output effect 
analysis [8, 14, 17]. In equation (5) the only term that 
remains unknown, SM, represents the residual sources 
of uncertainty that include, for example, model form 
error. Obtaining an estimation of model form error is 
critical to assess the validity of the numerical model 
over its domain of applicability. Once available the 
probability information N(0;SM) can be combined with 
the code’s output to assess confidence bounds 
associated with a new prediction of the model. 
 
5. CONCLUSION 
 

Model calibration—also known as finite element 
model updating in structural dynamics—is discussed in 
the broader context of model validation. Formal 
definitions are proposed and the notions of calibration 
and validation are illustrated using one example of 
transient structural dynamics. A distinction is introduced 
between input parameters and calibration variables. 
The former define the input space in which the model 
must be exercised and validated. The latter are 
generally introduced by the modeling process and 
should be eliminated through calibration and direct 
measurement as much as possible. 
 

A possible formulation of model validation is 
introduced. It is based on the assessment of total 
discrepancy between test data and numerical 
predictions. The total error is broken down into 
independent components, each evaluated over the 
entire design space if enough experiments are 
available. This methodology is currently being pursued 
with the hyper-foam impact experiment and preliminary 
results will be reported in future publications. 
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