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ABSTRACT 

Recent studies by the Department of Energy suggest that wind energy could make up as much as 20% of total 
U.S. power generation by 2030 [1].  By better understanding the load transmission in wind turbines, subsequent 
improvements in design could result in more efficient turbines and reduced maintenance costs.  The objective of 
this study is twofold.  First, a low-cost monitoring system to assess the condition of the bolted joint connections 
used to attach the blades to the hub is devised in order to characterize the force transmission into the hub and to 
detect when bolt loosening for in-service wind turbines.  A section of the CX100 blade is used for the joint 
monitoring study.  Second, a method to estimate the tip deflection of the blade is developed to better understand 
the dynamic loads acting on the rotor hub. A one-meter-long blade is used to estimate the tip deflection under 
laboratory conditions.  Using the results from these tests, this study demonstrates how a better understanding of 
load transmission from the blade to the hub may be achieved. 

Introduction 

In the coming decades, the number of online wind turbines is expected to increase dramatically as the nation 
seeks to expand its renewable energy generation.  The trend in wind energy is also toward larger, longer, and 
heavier blades in order to generate more power per unit. With demand increasing and designs growing larger, 
ensuring the reliability of wind turbine design is of critical importance to achieving the goal of 20% wind power.  
Although failure in the gearboxes or rotor blades is not the most common type of damage that occurs in wind 
turbines, it is among the most difficult, time-consuming, and expensive damage to repair [2].  Designers therefore 
need a better understanding of the forces acting on these devices to develop improved systems.   Furthermore, a 
rotational imbalance due to blade damage can cause serious secondary damage to the turbine if not corrected 
promptly, emphasizing the need for monitoring to protect against bolt loosening and other damage [3]. 

In order to monitor the state of a structure and to predict failure before it occurs, modern structures may 
implement health monitoring.  The Structural Health Monitoring (SHM) process would bring significant advantages 
to the wind turbine application by moving the maintenance paradigm to condition-based maintenance rather than 
time-based maintenance.  The current time-based maintenance might prescribe a set time for replacement of 
blades or other components, whether or not these components are in need of replacement.  However, wind 
turbines are typically located in remote and windy sites which make them expensive and dangerous to repair.  
Current inspection techniques cost about two percent of the initial wind turbine cost annually [5].  A SHM system 
would identify the state of damage of turbine components and reduce the uncertainty associated with time-based 
maintenance, allowing repairs to be made when a part is actually damaged.  Such a system would also mitigate 
the high cost of unexpected catastrophic failure caused by undetected damage. 

Many health monitoring systems rely on the use of “smart” materials called piezoelectrics (PZT) patches.   These 
materials strain when a voltage is applied; conversely an applied strain causes the piezoelectric (in this case, a 
PZT patch) to produce a charge.  In this way, PZT tranducers bonded to a host structure can serve the dual 
purposes of actuation and sensing and consequentially are called “smart” or “active” materials.  PZT wafers are 
used widely in structural dynamics applications to measure high-frequency dynamic responses because they are 
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lightweight, inexpensive, and robust.  Park et al. reviewed PZT sensors and their application to the impedance 
method in great detail [6]. 

To better understand the causes of rotating imbalance and premature gearbox damage, designers are particularly 
interested in the blade tip deflection and the forces transmitted through the hub to the gearbox.  Therefore, 
methods are proposed here to measure both quantities. 

Mascarenas et al. were able to identify loose bolt damage by implementing the impedance method using 
frequency shifts as a feature for damage identification [4].  A PZT patch bonded to an aluminum washer (‘smart 
washer’) was used as a damage detection sensor.  A smart washer is advantageous in turbine applications 
because it is cheap to manufacture compared to other alternatives such as load cells.  The simplicity and 
repeatability of the washer result in the need for only one baseline measurement of the impedance and not a 
baseline measurement for each washer.  The unique aspect of this study is modifying the approach of 
Mascarenas et al. by implementing the impedance method with a smart washer using damping as a feature for 
both damage identification and quantifying the static forces transmitted through the hub.  A mathematical 
relationship correlating the damping with the bolt torque is determined so that a simple red-yellow-green light 
SHM system could be implemented to provide turbine operators a condition-based warning system for loose bolt 
damage. 

In order to monitor the tip deflection of the blades, an accelerometer is applied to the tip of the blade.  The 
acceleration data and a state-space model of the blade structure are the input to a Kalman filter, which will be 
used to extract the desired deflection [7].  The Kalman filter has several advantages over other possible numerical 
methods.  First, the algorithm does not require knowledge of the initial conditions as do integration routines, which 
prevents it from diverging over time.  Also, the Kalman filter requires no knowledge of the forcing function applied 
to the structure—quite convenient considering that it is impractical to measure the wind pressure on an actual 
wind turbine blade.  Finally, there is significant robustness with respect to the parameters that make up the model, 
meaning that not all parameters need to be known exactly to obtain a solution. In this study, the algorithm is 
subjected to two verification tests: an analytical 2-DOF spring-mass-damper system and an aluminum cantilever 
beam test.  Subjecting the algorithm to a test on an actual wind turbine is the next step in verification. 

Experimental Procedures for Loose Bolt Damage Identification 

The smart washer shown in Figure 1 first implemented by Mascarenas et al. was used as a bolt damage detection 
sensor.  Initially, an experiment was performed to validate the capabilities of the washer for loose bolt damage 
identification.  Using a CX-100 turbine hub shown in Figure 2, 6 bolts spaced evenly around the hub were 
tightened to 25 ft-lbs to simulate an undamaged (tight) condition.  Five baseline measurements were taken by 
recording the mechanical impedance of the smart washers under these loads at the washers’ first resonant 
frequency.  Bolt/washer assembly labeled 4 was loosened to 0 ft-lbs of torque to simulate a damaged (loose) 
condition.  Then bolts 4 and 9 were loosened to 0 ft-lbs of 
torque to simulate two bolts in the damaged condition.  The 
impedance of the damaged bolts showed significantly larger 
resonant amplitudes than the undamaged bolts, indicating that 
by measuring the impedance of a smart washer, a damage 
index could be developed to identify which bolts were in the 
damaged state and undamaged state. 

Figure 1 - A smart washer used for damage identification.  A PZT patch is 
bonded on the right, and a strain gauge is bonded on the left. 



Secondly, the impedance response of the smart washer 
was measured under varying bolt torque conditions at the 
first and second modes.  Using the ABAQUS finite 
element code the mode shapes and frequencies of the 
first and second mode were estimated.  The frequencies 
estimated were on the order of 20 kHz and 50 kHz.   
 
For the experiment, an Agilent 4294 impedance analyzer 
was used. The analyzer was connected to the PZT patch 
on the smart washer.  A MATLAB program controlled the 
operation of the impedance analyzer which actuated the 
PZT over a frequency range and then sensed the 
response using the same patch. 
 
 
Procedure: 

1. Input a frequency range for the first and 
second modes into MATLAB® program 
controlling the Agilent® impedance analyzer 

2. Measure impedance response with analyzer 
at first and second modes at each torque 
level 
(Torque Levels: 0, hand-tight (~1), 5, 10, 15, 20 [ft-lbs]) 

3. Repeat 1-2 for seven Smart Washers and bolt assemblies 
 
With increasing torque level, a slight shift in natural frequency to higher frequencies and substantial amplitude 
attenuation were observed in the measurements.  Additionally, the 20 kHz mode was lost in noise above 10 ft-lbs 
and the second mode shows coupled resonance peaks above 10 ft-lbs. The experimental setup was modified to 
include a piece of rubber isolating the washer and the bolt and the washer and the test plate to isolate structural 
coupling with the washer dynamics.  The experiment was then repeated with the new setup.  The first mode was 
again lost in noise after 10 ft-lbs.  The second mode has one resonance peak with greater amplitude attenuation 
as torque increases.  The damping of the second mode was chosen as a good indicator of torque level over the 
torque test range of interest because the amplitude attenuation is significant between torque levels; however, the 
rubber isolators resulted in somewhat inconsistent torque measurements.  Therefore, a strain gauge was applied 
to the smart washer and the impedance response of the washer under varying loading conditions was measured 
after the strain had reached a steady state.  The strain was recorded for each impedance measurement.  The 
strain was calibrated with the actual torque in the bolt by recording the strain while the torque in the bolt was 
maintained with a torque wrench. 

Experimental Procedures for Kalman Filter 

Tip deflection estimation was accomplished by the application of an algorithm known as the Kalman filter.  The 
Kalman filter allows particular states (e.g. displacement, temperature, strain) to be estimated when it is impossible 
to obtain direct measurements.  A dynamic model of the system must first be produced, which is used by the 
algorithm together with the measured data to produce the estimates of the desired states.  The algorithm itself 
uses an iterative method that seeks to minimize the variance of the estimation error to predict and update the 
values of the state variables in each time step of the simulation [7].  There are several significant advantages of 
using a Kalman filter in the wind turbine application.  First, the filter does not require knowledge of the forcing 
function, which is highly variable and dependent on wind conditions in a turbine.  Second, the filter can estimate 
tip deflection—a quantity that is infeasible to measure directly in a large-scale wind turbine—using only tip 
acceleration measurements.  Furthermore, convergence of the solution does not depend on knowledge of the 
initial conditions and is robust with respect to variation in parameters (geometrical, material, etc.) whose values 
are not well known. 

The process of tip deflection estimation began with the implementation of the Kalman filter in the Python 
language.  The code was then verified by running simple test problems.  The first test problem was an analytical, 
two DOF spring-mass-damper system with a sinusoidal input applied.  The input was assumed to be known, the 

Figure 2 - A CX-100 turbine hub, approximately 15" OD, used for 
testing. 



“measured” quantity is the displacement of the first mass.  The solution from this problem was compared to a 
known reference solution and the performance of the algorithm was confirmed.  Next, the algorithm was modified 
to use a model constructed from beam finite elements.  After assembling the stiffness and mass matrices, the 
model is converted into a state-space representation and passed to the Kalman filter.  Code verification for this 
revised Kalman filter was accomplished using a 
rectangular aluminum beam test structure, 
shown in Figure 3.  The beam was fixed on one 
end and the cantilevered end was 15 cm long.  A 
shaker was attached 5 cm from the fixed end, 
and an accelerometer and laser vibrometer were 
placed at the free end of the beam.  Three inputs 
were applied to the beam: a chirp, an impulse 
chain, and a sine wave.  The tip acceleration, tip 
displacement, and input force data were 
recorded imported to Python for the data 
analysis. 

Smart Washer Analytical Modeling 

In order to determine the modes and frequencies 
of the smart washer that is measured by the 
impedance analysis, an analytical model was 
constructed.  ABAQUS finite element software 
was used to create the geometry and mesh it 
with about 5 elements through the thickness at 
the thinnest point.  The meshed model is shown in Figure 4.  Then a linear modal analysis was run to determine 
the frequencies and mode shapes for various boundary conditions. 

For initial frequency estimates used to determine a reasonable range for the experiment, the washer was 
simulated in the free-free condition.  Later, attempts were made to replicate the experimental phenomenon of 

damping and frequency shifts with changing torque in the 
model.  To make a comparison of damping, a frequency 
response function was obtained by selecting two nodes in 
the model as well as a frequency range over which the 
dynamics would be obtained.  The output data were then 
processed to extract the FRF. 

However, it was observed in all cases that the frequency 
and damping did not change significantly and that whatever 
change was exhibited was highly dependent on the 
boundary conditions applied.  The washer was first modeled 
with an applied compressive pressure to simulate the bolt 
torque, but this boundary condition did not change the 
frequency response.  The washer was then modeled using 
3D spring-to-ground elements at each node of the contact 
faces.  The spring stiffnesses were varied, resulting in 
noticeable changes in frequency.  It is hoped that by 
understanding the boundary conditions better, the model 
can be calibrated to show better agreement with 

experimental observations. 

Data Analysis - Bolt Joint Monitoring 

In the bolt monitoring experiments, the impedance of a smart washer was measured under two loading 
conditions—loose and tight—to investigate the capacity of a smart washer for identifying loose bolt damage.  The 
smart washer impedance was measured under multiple loading conditions at the first and second modes.  In the 
analysis, the damping of the impedance response is used as the feature to correlate with torque load.  The 

Figure 4 - Finite element model of the washer. 

Figure 3 - Aluminum cantilever beam test set-up. 



frequencies from the modal analysis of 
the washer were used to determine the 
experimental frequency range.  
However, as stated in the previous 
section, the resonance peaks of the first 
and second mode of the washer 
become coupled with the test structure 
and the bolt at higher torque levels; as a 
result, damping estimation becomes 
difficult.  The washer was isolated from 
the test structure and the bolt with two 
pieces of rubber material.  Damping was 
extracted from the impedance response, 
but results were not repeatable.  Finally, 
a strain gauge was attached to the 
washer and damping was correlated to 
the axial strain in the washer. 

 

 

A simple damage index was developed to demonstrate the effectiveness 
of a smart washer at detecting damage.  The magnitude of the 
impedance for all data was normalized by the peak amplitude of the loose 
bolt impedance response; in this way, a damage index of 1 indicated 
complete loose bolt damage and a 0 indicates infinite bolt torque load.  
Figure 5 shows the undamaged baseline data (all bolts torqued to 25 ft-
lbs) near a damage index of 0.  When bolts 4 and 9 are loosened to 0 ft-
lbs, the damage index clearly indicates loose bolt damage.  There is 
some variability in the damage index value of bolts 4 and 9; however, the 
values are relatively close validating the claim that smart washers provide 
repeatable data.  

The next test, which measured the impedance of the washer at varying 
torques, demonstrated coupling in the impedance response between the 
structure, bolt, and washer.  The half power method was used to calculate 
the damping of the impedance response at each torque level.  A script 
written in the Python language implemented the half-power method for 
the experimental data.    Another Python script was used to estimate the 
variability from using the half-power damping method.  In this script, the 
damping ratio of a 1-DOF mass-spring-damper system was varied and the half-power damping script was 
implemented to estimate the response.  The half-power method estimate of damping was determined not to 
diverge significantly from the true damping value until approximately 10% damping.  The damping in the test 
range of torques was between 0 and 2.5 %; therefore, the half-power method is valid for our test.  In addition, the 
half-power method resulted in only a small amount of error in the torque estimates.  The most significant error in 
torque estimation came from the torque wrench and the rubber isolators.  Using a 350 ohm strain gauge in a 
quarter bridge setup, the torque was correlated with the strain in the bolt.  A maximum variability of 2 ft-lbs was 
determined from our strain-torque calibration.  Finding a more suitable damping material than the rubber that 
would both isolate the washer but demonstrate fewer viscoelastic characteristics might be necessary to 
implement this measurement method on an actual turbine hub.  Curve fitting techniques might also be tried on the 
impedance response; this might reduce the need for a correlation to strain and the use of the isolators all 
together. 

Figure 7 presents a correlation between damping ratio and bolt torque load.  The data in red represents damping 
measurements when the bolt was damaged (0-1 ft-lbs).  The data in blue represents damping measurements 

Figure 6 - Test assembly showing the rubber 
isolators (dark orange) between the bolt and 
washer and the washer and aluminum test plate. 

Figure 5 - Damage detection in turbine hub bolted joints. 



when the bolt undamaged (>1 ft-lbs).  All of the damaged data points fell below a damping ratio threshold of 
1.25%.  In implementing this system on an actual turbine a damping measurement of 1.25% or less would 
indicate loose bolt damage is present.  The undamaged data points were linearly curve fit; all of the data falls 
between ±2.5 standard deviations from the mean trend line.  For any given damping estimate, a range of possible 
torque values can be identified with close to 95% certainty.  As an example, a damping measurement of 2 % 
would indicate that the torque in the bolt was between 14 and 18 ft-lbs, ± 2 ft-lbs variability.  

Previous bolt damage indication systems have used a red light (damaged) - green light (undamaged) system [4].  
In order to better service a wind turbine before it becomes damaged, it is advisable to implement an additional 
‘yellow’ light that a bolt is soon to be damaged.  In order to design this system several parameters would need to 
be identified.  A minimum torque value would be prescribed based on giving a technician enough time to respond 
to the warning and fix the loose bolt damage before damage becomes critical.  By using the damping ratio to 
torque relationship established previously, a damping ratio can be selected guaranteeing that if this damping ratio 
is measured the torque will not be less than the minimum warning torque.  Any damping values below this 
threshold would have to indicate the bolt is damaged.  The second parameter that must be established is the 
minimum torque level which can be considered undamaged.  Once this level is established the damping ratios for 
which the red, yellow, and green light warning indicators represent is completely defined.  For illustrative 
purposes, the red, yellow, green light system is demonstrated on Figure 7 where 6 ft-lbs is the minimum safe 
torque for potential damage to be fixed, and 14 ft-lbs is the minimum torque for which the turbine blade is safely 
tightened to the hubs. 

Future work would include improving the variance of the torque measurements by implementing an improved 
smart washer vibration isolator or curve fitting to eliminate the need for the isolators all together. In addition the 
following should be investigated: the repeatability and variability of damping-torque curve experiments on the CX-

Figure 7 - Correlation between damping ratio and torque.  The red, yellow, and green sections show how a potential 
warning system could be developed for loose bolt damage. 



100 hub, validation of the red-yellow-green light warning system when bolts/washers are on a turbine hub, and 
the capacity of a smart washer for determining dynamic loads through the hub. 

Data Analysis - Kalman Filter 

After making measurements on a credible 
test structure (in this case, the aluminum 
beam), the data were analyzed.  For the 
Kalman filter, the input force is assumed 
to be unknown; therefore, the input does 
not play a role in the algorithm.  The 
measured quantity used for comparison 
by the filter is the acceleration at the tip of 
the beam.  Finally, the displacement data 
is not used directly, instead being used 
as a comparison for the estimated 
deflection. 

The most notable feature of the input 
data is the noisiness of the accelerometer 
data, as shown in Figure 8.  This figure 
shows measurements of force for all 
three input types in the left column 
compared to the measured tip 
acceleration in the right column.  
Speculation suggested that such high 
levels of noise might lead to a poor 
convergence of the Kalman filter solution, 
but in fact the solution still converged 
quite well for the chirp and sine inputs.  However, the impulse chain input did not converge well, probably 
because the sudden changes in the (unknown) input combined with noisy accelerometer data did not allow the 

Kalman filter to adjust properly in the time window being 
studied.  For the remainder of the discussion of the 
aluminum beam test, the chirp input will be the example 
chosen. 

To further verify the performance of the Kalman filter, the 
estimated state vector was compared with two separate 
integrated reference solutions, as shown in Figure 9.  It is 
important to note that integrated solutions will be more 
accurate in this test application, but are infeasible for use 
in wind turbines for two reasons.  First, unlike the Kalman 
filter, the integrated solutions require a measurement of 
the input force.  Second, the integrated solutions will begin 
to diverge over time due to the uncertainty in the initial 
conditions.  The solutions would be sure to diverge in a 
wind turbine because the initial conditions are not known 
as they are in the simple beam test and because of the 
much longer time duration.  However, these solutions are 
useful for comparative purposes, and it can be seen that 
they agree well.  

A more quantitative assessment is obtained by comparing 
the tip deflection prediction of the Kalman filter to the 
values measured by the laser vibrometer during the test.  
This comparison is shown in Figure 10.  The error between 
the measured and predicted values is shown in yellow.  
The peak value of the deflection is predicted with only a 

Figure 8 - Input signal (left) and measured acceleration (right) for three tests 
conducted on the aluminum cantilever beam. 

Figure 9 - Comparison of state vector predicted by Kalman filter 
and by two integration routines. 



2.0% error, an encouraging number considering the peak deflection is the quantity of most interest in determining 
the loads transferred to the wind turbine hub. 

Given that the results of the Kalman filter 
simulation correlate quite well with the 
various references, the algorithm can be 
considered verified for the simple cantilever 
beam problem. Next, the Kalman filter must 
be applied to the one-meter-long wind 
turbine blade structure.  The test set-up, 
shown in Figure 11, was very similar to the 
aluminum cantilever beam test.  A laser 
vibrometer was placed at the end of the 
blade.  An accelerometer and a shaker were 
attached 21 cm from the tip of the blade.  
Tests were run and acceleration data taken 
for a variety of sine and chirp inputs. 

The next challenge was to construct the 
dynamic model of the blade.  Geometrical 
properties were estimated for a five-element 
discretization.  Material properties were 
unknown, so the modulus of elasticity had to 
be estimated.  To do so, a simple finite 
element beam model was constructed to 

compare natural frequencies to the modal properties of 
the blade.  The blade properties were found 
experimentally by conducting a roving impact hammer 
modal test.  The value of the modulus of elasticity in the 
analytical model was then calibrated to best match the 
first natural frequency (which is the mode excited the 
most in the Kalman filter testing).  A modulus of E = 17 
GPa was settled on, which yielded an error of about 1% 
in the frequency of the first mode. 

However, the first round of simulations did not give good 
results.  Such a difficulty indicates that a more accurate 
model of the turbine blade is needed.  Because of the 
irregular geometry and unknown material, the current 
model estimates the mass and stiffness properties of the 
blade rather crudely.  In order to produce meaningful 
results, a more detailed model of the turbine blade must 
be developed. 

This difficulty will undoubtedly arise in the real turbine 
blade application as well, highlighting the need for 
understanding the uncertainty in the various parameters 
used in the Kalman filter algorithm.  Therefore, a 
verification and validation (V&V) study will be performed 
on the turbine blade test structure to demonstrate how 
parameter estimation would be accomplished in a real-
world application.  First, the important parameters are 
selected with the aid of a Phenomenon Identification and 
Ranking Table (PIRT).  The parameters with a high 
“UxS” factor, which represents the combination of factors 
that have high uncertainty and on which the solution is 

sensitive, will be assessed to see how they may be improved.  Performing a sensitivity analysis will be particularly 
important to establish how the solution error changes as parameters are changed. 

Figure 10 - Tip displacement comparison between predicted and measured 
values. 

Figure 11 - Wind turbine test set-up for Kalman filter validation. 



 

Conclusions 

A low-cost smart washer has been demonstrated as an effective impedance sensor for detecting damage in the 
hub of a CX-100 wind turbine.  The repeatability of the smart washers eliminates the need for a baseline 
measurement when implementing multiple washers, making smart washers ideal for wind turbine application.  
Because of this minimal baseline requirement, a simple statistical model for estimating bolt torque was developed 
by extracting the damping ratio of impedance measurements.  After establishing a model, an advance-warning 
system was developed by which the parameters were defined so that turbine blade operators would successfully 
be able to identify undamaged bolted connections, damaged bolted connections, and bolted connections that 
could potentially become damaged soon if not attended to. 

Sources of error in the model were identified as coming from the torque measurements.  Finding a suitable 
vibration isolator for the washer which would also allow a consistent bolt load to be maintained would help 
improve model variance and result in more accurate torque estimation.  Future work would include improving the 
torque measurements and validating the statistical model and the warning system in an actual turbine hub. 

The Kalman filter technique for measuring tip deflection has made substantial progress toward implementation on 
wind turbine blades.  The algorithm was selected to make dynamic estimations of tip deflection using only 
acceleration data and a model of the structure.  It is particularly well suited to the wind turbine application because 
it requires no knowledge of the input force or of the initial conditions and can tolerate substantial error in the input 
parameters.  For a wind turbine, with its complex loading conditions, geometry, and material properties, these 
advantages are critical for obtaining a good estimate. 

The algorithm was first implemented in Python code.  The code was tested on the analytical 2-DOF spring-mass-
damper system and the results matched the known solution.  The aluminum cantilever beam was used to 
generate actual test data for the Kalman filter.  Again, the algorithm performed well, predicting the peak deflection 
to within 2.0%.  Finally, a model was constructed for the one-meter-long turbine blade.  It was determined after 
data was taken that the system model requires significant refinement to better comprehend the complex 
geometrical and material properties.  A sensitivity analysis will be performed to quantify the effect that uncertainty 
in various parameters has on the final solution.  After the final two steps—improvement of the model and 
sensitivity analysis—the technique will be ready for application on full-scale, in-situ wind turbine blades.  In short, 
dynamic tip displacement can be obtained by only measuring acceleration with proper application of a Kalman 
filter to an appropriate model of the system. 
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