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NOMENCLATURE 
A, B, C System state-space matrices 

e Model error 

J Cost function 

J’ Perturbed cost function 

l  Adjoint operator 

r Test function 

t Time vector 

T Final time 

u Input guess 

u’ Perturbed system states 

x System states 

x’ Perturbed system outputs 

y System outputs 

ym Measurements 

 

 

ABSTRACT 
This report will focus on the estimation of unmeasured dynamic inputs to a structure given a numerical model of 

the structure and measured response acquired at discrete locations. While the estimation of inputs has not 

received as much attention historically as state estimation, there are many applications where an improved 

understanding of the immeasurable input to a structure is vital (e.g. validating temporally varying and spatially-

varying load models for large structures such as buildings and ships). In this paper, the introduction contains a 

brief summary of previous input estimation studies. Next, an adjoint-based optimization method is used to 

estimate dynamic inputs to two experimental structures. The technique is evaluated in simulation and with 
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experimental data both on a cantilever beam and on a three-story frame structure. The performance and 

limitations of the adjoint-based input estimation technique are discussed. 

 

 

1. INTRODUCTION 
 

1.1 Motivation 

Knowledge of excitation to a structure can be useful for a number of different engineering applications. With a 

better understanding of the dynamic input to a system, the response of that system to its operational and 

environmental loading conditions can be more accurately determined. This information can be used to optimize 

design with the intent of improving system performance for failure mechanisms such as yielding, fatigue, stability 

or excessive deformation. However, it is not always convenient or possible to measure dynamic inputs to a 

system. For example, direct measurement of the input may be impractical when the excitation has a complex 

spatial distribution (e.g. wave loading on a ship hull) or when the structure is very large (e.g. suspension bridge 

subject to traffic loading). In these instances a method for estimating the inputs becomes useful. The estimation of 

inputs to a system constitutes an inverse problem, which has been studied for a wide variety of applications in 

structural dynamics (e.g. experimental modal analysis and finite element model updating). 

 
1.2 Background 

Numerous techniques based in the frequency or time domain have been used experimentally for input estimation; 

these include deconvolution methods, Kalman filters, dynamic programming, and gradient based methods. For 

the most part, research has focused on linear, time-invariant systems, involved only numerical simulations, and 

ignored the problem of identifying spatially-varying loads. In 1992, Carne et al. [1] developed the Sum of 

Weighted Averages Technique (SWAT), and applied the technique to experimentally identify the loading time-

history on the nose cone of a weapon system. Later, Carne et al. [2] and Mayes [3] demonstrated the success of 

two methods of identifying the weighting matrix used with SWAT. In [4], an extended Kalman filter and recursive 

least-squares estimator were applied to a non-linear, spring-mass-damper system to reconstruct a series of 

various shape impulses. In simulation, the method performed admirably for a three degree-of-freedom (DOF) 

system. Nordstrom [5] developed a variation on the Kalman filter which was implemented in simulation on a time-

variant system, and on a bridge structure with a moving input, both with excellent results.  

 

Each of the previously mentioned techniques comes with its own set of limitations. Deconvolution methods 

involve an inversion of the frequency response function, which in itself is inherently unstable. The SWAT method 

only identifies the force applied to an object’s center of mass and, therefore, cannot determine the location of 

inputs. Kalman filtering requires some knowledge of the expected noise in signals. Additionally, as Kalman filtering 

is run online, it only uses information from the previous state. In situations where the entire data history is known, 

a better estimate could be made at each instant combining past and future data. For this study, input estimation 



will be performed using an adjoint-based optimization method. Previous applications for this technique include 

model predictive control and weather forecasting. The adjoint-based method developed herein has none of the 

above limitations but can be highly computationally and memory intensive. 

 

1.3 Purpose 

Because many structural characteristics can be determined from understanding the loading applied to a system, 

improved input estimations result in a better definition of the system as a whole. Previous input estimation 

research has shown great success in numerical simulation, but few studies have implemented the techniques on 

physical structures. In this work, inputs estimated by an adjoint-based optimization method are compared to those 

measured to evaluate its performance. This is done by implementing the method on two structures; a three-story 

frame structure and a cantilever beam.  

 

1.4 Outline 

This report contains an overview of the adjoint-based optimization method for input estimation in section two. A 

more rigorous derivation of the algorithm can be found in Appendix A. Next, the physical structures and numerical 

models are presented along with results of time series simulations to validate the models for this application. 

Section 4 presents results for estimating the input to both structures, followed by a discussion of the success of 

the technique along with its limitations and difficulties. 

 

 

2. ADJOINT-BASED OPTIMIZATION 
 

To begin the adjoint-based optimization, a simple cost function (based on the error between the predicted outputs 

and the measured outputs) is constructed; the aim is to find an input which minimizes it. To accomplish this 

minimization, a fairly straight forward gradient-descent process is followed. As briefly shown in Appendix A, the 

gradient of the cost function with respect to the input can be calculated with two simulations, regardless of the 

length of the input or complexity of the structure. The adjoint-based optimization method proves to have a lower 

computational cost when compared to a finite difference approach for estimating the gradient as only two 

simulations are required to generate an estimated input.  

 

Implementation of the adjoint-based optimization method involves a few preliminary steps and a while loop to 

perform the iterations on the input guess. First, a model is created in state space and some guess must be made 

for the input. The required number of iterations is largely dependent on the accuracy of the initial input guess. For 

the while loop, some criterion for stopping the iterations needs to be calculated along with a threshold setting. 

Since the true input to the tested structures in laboratory testing can be measured directly, a metric calculated with 

the true input vector and the current estimate can be used as a stopping criterion. In an application where input 

estimation is required due to the difficulty of measuring inputs directly, a stop criterion based on the difference 



between two successive input estimates could be used. 

 

The adjoint-based optimization while loop itself contains three main steps. First, the current input estimate is used 

to simulate the states of the system using a numerical integration technique. Next, a test function is solved by 

reverse time numerical integration to calculate the gradient of the cost function with respect to the current input 

estimate. Finally, the gradient is used to update the input estimate using any standard gradient descent based 

optimization method. A line search can be used to calculate the step size for input updating. Figure 1 diagrams 

the adjoint-based optimization method for input estimation flowing from left to right. 

 

Figure 1. Flow diagram for adjoint-based optimization input estimation 

 

 

3. STRUCTURES AND MODELING 
 

The adjoint-based method was implemented on two structures: a three-story structure and a cantilever beam. As 

shown in Figure 2, the three-story structure consists of four aluminum columns (17.7 × 2.5 × 0.6 cm) which are 

connected to the top and bottom of each aluminum plate (30.5 × 30.5 × 2.5 cm) creating a four DOF system. 

Accelerometers were attached at the center line of each floor on the opposite side to the excitation source to 

measure the system’s response. Input to the system was applied by a shaker at the base floor. 
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4. CONCLUSION 
 

This preliminary study on implementing adjoint-based optimization techniques for use in estimating inputs to 

dynamic structures produced promising results. In simulation, the method is able to recreate any continuous input 

to any model, although for some systems many iterations of the optimization may be needed to reach a perfect 

estimate. For the cantilever beam structure, the adjoint-based optimization performed as well as can be expected 

considering the simplistic model used with only 6 degrees-of-freedom. Likewise, input estimation for the three-

story structure worked well when accelerometers were placed on every floor. With limited sets of measurements, 

the estimate was not able to accurately reconstruct the magnitude of the input though the phasing still matched 

the measurement. With an improved model (particularly for energy dissipation on the three story structure), the 

adjoint-based optimization method would be expected to perform even better than the results shown here. The 

routine may also be expected to perform better for fewer response measurements if the gradient descent was 

changed to a global minimization technique. 
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APPENDIX A 

 

Mathematically, the details of the adjoint-optimization approach are as follows. The non-linear finite element 

model can be represented as 

( )tuxfx ,,=&                                        (1) 

where x is the vector of system states (usually positions and velocities of all the nodes in the mesh of the 

structure), u is a vector of inputs at nodes on the structure and t is time. The measured outputs, y, can generally 

be represented as  

Cxy =  

where, C is some matrix. Stated another way, the outputs are some linear combination of the states of the system. 

The model’s error is then defined to be 

myye −=  

The goal of the optimization is to select u such that e is minimized. Or, more precisely, we want to minimize the 

cost function 

∫=
T T dteeJ
02

1
                                      (2) 

Since myCxe −= , after some manipulation, this cost function can be rewritten as 

dtyyCxyQxxJ m
T

m
T

m

T T +−= ∫ 2
0

 

where Q=CTC. If the input u is perturbed by u′ , the perturbed state trajectory is given by the tangent linear 

equation 

( ) ( )utBxtAx ′+′=′&  or uBx ′=′l                               (3) 

where ( )tA
dt
d
−=l  and A(t) and B(t) are obtained by linearizing Equation 1 about x and u. The resulting 

perturbation to J is given by  

( ) dtxCyQxdtxCyxQxJ
T T

m
TT

m

T T ∫∫ ′−=′−′=′
00

                       (4) 

The goal of what follows is simply to re-express J’ as a functional linear in u’. To that end, we integrate Equation 3 

against a test function, r. 

( )( )dtxtAxrdtxr
T TT T ∫∫ −′=′
00

&l  

Using integration by parts, we can rewrite the above equation as 

Tt

t

TT T TT xrdtxrdtxr
=

=
′+′=′∫ ∫ 00 0

* )(ll  



where ( )TtA
dt
d
−−=*l . This is true for any test function, r. If we select r such that  

( ) 0

*

=
−=

Tr
yCQxr m

Tl
                                      (5) 

where T is the final time, then Equation 4 can be rewritten as 

( ) ( ) dtuBrdtxrdtxrdtxCyQxJ
T TT T T TTT

m
T ∫∫ ∫ ∫ ′===−=′

00 0 0

* ''' ll  

Equation 5 is referred to as the adjoint equation. Thus, we have expressed J’ as a functional linear in u’. The 

gradient of which with respect to u is then simply 

Br
Du
DJ T=  

Therefore, givens some initial guess at u, Equation 1 is solved for x. This x is then used in conjunction with the 

measured data, ym, to solve Equation 5 in reverse-time since r(T) is known. From r, the gradient of the cost 

function with respect to the input may be calculated, and used to update u (using any number of standard gradient 

descent based optimization techniques). Note that solving Equation 5 requires what is known as an adjoint 

version of the simulation code, which can calculate the linearized A(t) and B(t), as functions of x and u. This step 

allows for non-linear models to be used with the technique. 
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