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ABSTRACT: Accelerometer data were acquired from a 
simulated three-story building driven by an electro-dynamic 
shaker attached to the base of the structure. Data were 
collected on the undamaged structure and after multiple 
damaged cases had been introduced to the structure. 
Operational variability was introduced by changing the 
shaker input levels.  A statistical damage detection and 
localization method was implemented and applied to these 
data.  The algorithm was shown to be insensitive to the 
operational variability and other sources of variability.   This 
investigation was conducted as part of a conceptual study to 
demonstrate the feasibility of detecting damage in structural 
joints caused by seismic excitation. 
 
NOMENCLATURE: 
 
X = acceleration time history value 
α = auto-regressive model coefficients 
ε = residual error 
m = number of data points 
n = auto-regressive model order 
 
1. INTRODUCTION 

Recent earthquakes have shown that welded moment 
resisting steel connections are susceptible to failure [1].  
Current methods of damage detection for joints in buildings 
subjected to earthquakes are quite costly and time-
consuming visual procedures. If a damage detection method 
based on the measured vibration response can be 
developed, it can then be combined with current MEMS 
sensing technology, constituting a more economical and 
quantifiable damage detection method.  Such a damage 
identification method can potentially provide significant 
economic and life-safety benefits.  The focus of this study is 
to conceptually demonstrate a vibration-based damage 
detection system for structural connections. 

In the research presented herein, baseline data sets 
measured on a structure in an undamaged state were 
compared in a statistical manner to data sets measured on 
the structure after various damaged conditions had been 

introduced to the structural connections. The structure tested 
was representative of a three-story frame structure. 

The damage detection method used in this study was 
composed of a four-part process [2]:  
 

1. Experimental scope definition, 
2. Data acquisition and cleansing, 
3. Feature extraction, and  
4. Feature discrimination through statistical modeling.  

Defining the scope of the experiment involves using driving 
motives of the experiment to define experimental control and 
variability [2]. During this stage, damage definition, flexibility 
of implementation and variability under which the structure 
was to be tested were considered. Damage definition should 
attempt to model the effect of damage in actual structures. 
Implementation flexibility governs the number, placement, 
and type of sensing devices to be used in the test. If the 
method used in the experiment is overly complicated or 
costly it will be impractical to implement.  Variability was 
introduced in three forms: environmental, operational and 
testing variability.  Each of these sources of variability must 
be carefully considered and the feature extracted for 
damage detection should be insensitive to all of them.  
 
Possibly the most important aspect for implementing a 
damage detection strategy is to determine the appropriate 
damage-sensitive features to be extracted from the data. 
Features that are highly sensitive to damage while being 
insensitive to other variables must be chosen. The features 
extracted are used to develop a statistical model, which will 
discriminate between features from the undamaged and 
damage states.  
 
A three-story frame structure was tested in different damage 
states. Then an Auto-Regressive (AR) model was fit to the 
collected data.  Residual errors between AR predictions and 
the measured data were used as the damage sensitive 
features. Statistical process control charts were developed 
for actual damage detection.  Results showed that the 
method developed could detect damage in most cases.  The 
extracted features were insensitive to sources of variability, 



which resulted from test to test variability introduced by 
technicians and operational variability introduced by 
intentionally varying shaker input levels.  
 
2. TEST STRUCTURE DESCRIPTION  
 
The structure tested was a simulated three-story frame 
structure, constructed of Unistrut columns and aluminum 
floor plates.  Floors were 0.5-in-thick (1.3-cm-thick) 
aluminum plates with two-bolt connections to brackets on the 
Unistrut columns.  Floor heights were adjustable.  The base 
was a 1.5-in-thick (3.8-cm-thick) aluminum plate. Support 
brackets for the columns were bolted to this plate. All bolted 
connections were tightened to a torque of 50 foot-pounds 
(70Nm) in the undamaged state. Four Firestone airmount 
isolators, which allowed the structure to move freely in 
horizontal directions, were bolted to the bottom of the base 
plate.  The isolators were mounted on aluminum blocks and 
plywood so that the base of the structure was level with the 
shaker.  The isolators were inflated to 20 psig (140 kPa).   
 
The shaker was connected to the structure by a 6-in-long 
(15-cm-long), 0.375-in-dia (9.5-mm-dia) stinger connected to 
a tapped hole at the mid-height of the base plate.  The 
shaker was attached at a corner on the 24-in (61-cm) side of 
the structure, so that both translational and torsional motion 
would be excited.  
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Figure 1. Assembled frame structure, out of plane shaking 
(not to scale). 
 
 
 
3. DATA ACQUISITION AND CLEANSING: 
 

The structure was instrumented with 24 piezoelectric 
accelerometers, two per joint (see Figure 2). Accelerometers 
were mounted on blocks glued to the floors and with wax on 
the Unistrut columns.  This configuration allowed relative 
motion between the column and the floor to be detected.  
The nominal sensitivity of each accelerometer was 1 V/g.  
Additionally, a force transducer was mounted between the 
stinger and the base plate.  This force transducer was used 
to measure the input to the base of the structure.  A 
commercial data acquisition system controlled from a laptop 
PC was used to digitize the accelerometer and force 
transducer analog signals.  A diagram of the data acquisition 
system is shown in Figure 3. 
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Figure 2: A typical floor plan showing sensor locations. 
 
Before recording each time history measurement, frequency 
response functions were calculated using five averages.  A 
Hanning window was applied to the time histories used in 
this averaging process. The frequency response functions 
and corresponding coherence function plots were used to 
initially examine the data in a qualitative manner. This 
inspection was performed as part of the data cleansing 
process in order to determine if a problem with the sensing 
system had occurred. 

Data that were analyzed in the feature extraction and 
statistical modeling portion of the study were the 
acceleration time histories.  For this type of measurement, 
the time histories were sampled at a rate of 1024 samples/s. 
A uniform window was specified for these measurements. 

A baseline undamaged data set was recorded before and 
after damage was introduced to the structure. Before 
acquiring each data set, the pressure on the air mounts was 
inspected, the bolt torques throughout the structure were 
verified and the accelerometers were also inspected for 
proper mounting.  Damage was introduced by loosening or 
removing bolts at the joints as summarized in Table 1.  
Additionally, operational variability was introduced by varying 
the shaker input level. 
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Figure 3:  Schematic of Data Acquisition System and Test Structure. 

 

Each time history was normalized by subtracting their 
respective mean values and dividing by their standard 
deviations.  This data normalization process was used to 
minimize any shifts caused by DC offsets and to minimize 
shaker amplitude dependence. 

 
4. FEATURE EXTRACTION: 

Because of the accelerometer placement, the relative 
difference between adjacent column and plate 
acceleration time histories should demonstrate movement 
at the joint. If the plate is securely bolted to the bracket, 
both accelerometers should provide similar readings . If 
damage is introduced at a joint, the adjacent 
accelerometers should exhibit some quantifiable 

difference in their readings. For this reason the difference 
between the time histories measured on the column and 
on the plate at every joint was examined. An AR model 
was then fit to this difference. Residual errors between 
actual time history differences and predicted differences 
were computed.   These residual errors were the damage-
sensitive features developed for this study.  Because the 
AR model is a linear predictive model, it was assumed that 
residual errors from this model applied to a nonlinear, or 
damaged, case would be greater than when the linear 
model was applied to the intact, linear structure.  Also, it 
was assumed that the largest changes in residual error 
would be associated with the damaged joint.  Statistical 
methods were applied to the residual errors to quantify 
when changes in this feature were significant. 

Table 1: Test Cases 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 The AR model used in this study is :  

Location Amount
Undamaged Set 1 2, 5, 8 N/A N/A 10

Damage Case 1 2, 5, 8 1C
Removal of 2 bolts from 

plate 5

Damage Case 2 2, 5, 8 1C
Removal of 4 bolts from 

plate and bracket 5
Undamaged Set 2 2, 5, 8 N/A N/A 10

Damage Case 3 2, 5, 8 3A
Removal of 2 bolts from 

plate 5

Damage Case 4 2, 5, 8 3A
Removal of 4 bolts from 

plate and bracket 5
Undamaged Set 3 2, 5, 8 N/A N/A 10

Damage Case 5 2, 5, 8 1C, 3A
Removal of 2 bolts from 
plate from each location 5

Damage Case 6 2, 5, 8 1C, 3A

Removal of 4 bolts from 
plate and bracket from 

each location 5
Undamaged Set 4 2, 5, 8 N/A N/A 10
Damage Case 7 8 1C Untie Bolt (hand tied) 10
Damage Case 8 8 1C Torque at 5 foot-pounds 10
Damage Case 9 8 1C Torque at 10 foot-pounds 10

Undamaged Set 5 2, 5, 8 N/A N/A 10

# Data Sets/ 
Excitation Level

Damage

Description
Excitation Level (Volts)  

Random Vibration 



i

n

j
jjii xx εα +=∑

=
−

1
 (1) 
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Where m is the number of data points that were fit.  Alpha 
values are computed using data from one undamaged 
case and are then applied to data from the other cases, 
both damaged and undamaged models.  

The order of the AR model, n, is determined by using a 
partial auto-correlation function [3]. Successive AR models 
of increasing orders are fit to the data and the magnitude 
of the last alpha values from these various models are 
plotted. The point at which the alpha values fall below a 
specified tolerance is selected as the order of the AR 
model. For this study the tolerance was set at m/1  .  
Figure 4 shows a plot of the last AR coefficient vs model 
order.  Based on this analysis an AR model of order 44 
was chosen.  

 
 

Figure 4: Partial auto correlation of an undamaged, low-
level test. The order chosen for this AR model was 44. 

 

5. STATSTICAL MODELING  
 

Statistical process control (SPC) was used to establish 
when a significant change in the damage-sensitive feature 
had occurred.  The residual errors of the AR model fit to 
the relative acceleration responses, x(t), measured at 
each joint when the structure is in good condition will have 
some distribution with mean, μ, and variance, σ2.  If the 
structure is damaged the mean, the variance, or both 
might change. Statistical process control provides a 
framework for monitoring future residual error values and 
for identifying new data that are inconsistent with past 
data.  
 
If the mean and standard deviation of the residual errors 
are known are known, a control chart is constructed by 
drawing a horizontal line at μ and two more horizontal 
lines representing the upper and lower control limits.  The 
upper limit is drawn at μ + kσ and the lower limit at μ - kσ.  
The number k is chosen so that when the structure is in 
good condition a large percentage of the observations will 
fall between the control limits.   In this study the values of 
k were determined in a heuristic manner from 
observations of numerous training data sets. 
 
As each new measurement is made, it can be plotted 
versus time or observation number.  If the condition of the 
structure has not changed, almost all of these 
measurements should fall between the upper and lower 
control limits, the exact percentage being determined by 
the choice of k.  In addition, there should be no obvious 
pattern in the charted data; e.g. there should not be a 
repeated pattern of 5 observations above the mean 
followed by 5 observations below the mean.  If the 
structure is damaged there might be a shift in the mean 
acceleration, which could be indicated by an unusual 
number of charted values beyond the control limits.  
Plotting the individual measurements on a control chart is 
referred to as an X–chart [4]. 
 
Note that observing an unusual number of observations 
outside the control limits does not imply that the structure 
is damaged but only that something has happened to 
cause the distribution of the current acceleration 
measurements to change.  If data outside the control limits 
cannot be accounted for by operational or environmental 
factors, the structure should probably be inspected for 
damage. 
 
To detect a change in the mean of the residual errors, an 
intuitively appealing idea is to form rational subgroups of 
size p, compute the sample mean within each subgroup 
and chart the sample means.  The centerline for this 
control chart will still be μ but the standard deviation of the 
charted values would be pσ .  Therefore, the control 

limits would be placed at pkσμ ± .  This type of 
control chart is referred to as an X-bar chart, see [4]. 
 
The subgroup size p is chosen so that observations within 
each group are, in some sense, more similar than 
observations between groups.  If p is chosen too large a 
drift that may be present in the mean can possibly be 
obscured.  An additional motivation for charting sample 
means, as opposed to individual observations, is that the 



distribution of the sample means can, by an application of 
a central limit theorem, be approximated by a normal 
distribution.  For this study p = 4. Control limits were set at 
three standard deviations from the mean. 

After observing numerous training data sets, the following 
threshold limits were established for classifying the 
residual errors from the AR predictions of the relative 
acceleration values at a joint.  If a joint had less then 10% 
outliers, it was considered to be in control and 
undamaged.  An example of such a condition is shown in 
Fig. 5.  When the residual errors produced between 10% 
and 80% outliers, a change in the operational conditions 
had taken place, but damage was not present. An 
example of such a response is shown in Fig. 6. Those 
joints that had 80% outliers or more were considered to be 
damaged. Figure 7 shows the results from a damaged 
joint.  This criterion could identify damage from the most 
severe cases down to hand tightening of bolts. However, 
this criterion could not identify bolts with torques of 5 and 
10 foot-pounds, as these torques were tight enough to 
prevent relative motion of the joints for the applied 
excitation levels. 
 
6. BLIND TEST RESULTS 
 
A series of “blind” tests were performed in addition to the 
initial series of tests described above in Table 1.  The 
“blind” tests involved one group member taking data and 
introducing damage and operational variability that was 
unknown to the rest of the group.  After the data was 
recorded, the other group members then tried to locate the 
damage using the algorithms developed above. The 
operational variability included rotating the shaker position, 
such that it was shaking the base perpendicular to the 
accelerometer measurement directions.  Variability also 
including setting masses on the floors of the structure.  
Very good results were obtained.  In almost all cases there 
were no false-positive indications of damage caused by 
these sources of variability.  Some joints did appear to be 
10%-80% outlier range, indicating an operational change, 
but the threshold value previously set for damage 
indication was not exceeded.  Ninety-seven percent of the 
joints examined in all test cases were correctly diagnosed! 

 
7. CONCLUSIONS AND FUTURE WORK: 
 
The damage detection method tested was successful in 
correctly identifying damage in almost all cases.  The 
residual errors from AR models fit to the relative 
accelerations measured at a joint proved to be insensitive 
to operational variability in the system, and very sensitive 
to damage. This statement is based on the 97% success 
rate obtained in the blind tests that were performed, which 

included both operational variability associated with the 
undamaged structure and damage introduced at the joints.  
 
Future work should include more extensive testing of the 
different types of variability and their effects on the model. 
Also, more work is needed to establish the threshold 
values that are used to indicate damage.  In actual 
applications it is doubtful if one will have the luxury of 
observing training data from a damaged condition.  
Therefore, the somewhat heuristic methods of establishing 
threshold values used in this study will have to be made 
more rigorous.  
 
This study was undertaken to conceptually demonstrate a 
vibration-based damage detection system for structural 
connections in building subject to earthquakes.  With the 
cost of current data acquisition technology it would be 
considered prohibitively expense to put two 
accelerometers at every joint in an in situ steel frame 
structure.  However, current developments in MEMS 
sensing technology (see www.imi-mems.com) coupled 
with recent developments in wireless data acquisition and 
transmission systems [5] indicate that instrumenting every 
joint in a structure will be economically feasible in the near 
future.  The results of this study show that there is the 
potential to identify and locate the damage at a joint if 
such an instrumentation system was put in place. 
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Figure 5.  X-bar control chart corresponding to an undamaged joint. Plus marks indicate points outside the control limits. 

 

 
 

Figure 6.  X-bar control chart corresponding to an undamaged joint nut with operational variability present. Plus marks indicate 
points outside the control limits. 

 

 



 
 

Figure 7. X-bar control chart corresponding to a damaged joint. Plus marks indicate points outside the control limits. 

 

 

 


